Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Om å bruke modeller til å forstå verden

Jeg synes ofte at kritikk mot forskning, det kan være klimaforskning eller det kan være annet som har med store og viktige spørsmål å gjøre, går omtrent slik:

1. Her har forskerne brukt en modell.
2. Modellen er en forenkling av virkeligheten.
3. Siden virkeligheten er mye mer komplisert, stemmer ikke resultatene av modellen.
4. Jeg vet mye om [fyll inn det som passer, for eksempel hvordan skyer dannes, hvor fort CO2 løses opp i havet, eller historiske temperaturverdier på hytta]. Dette har ikke forskerne fått med i modellen sin.
5. Om de hadde tatt med det som jeg vet, hadde de funnet ut at [fyll inn det som passer, for eksempel at jorda blir kaldere istedenfor varmere].

Dette er jeg litt lei av. Her er hvorfor:

1. Ja, forskerne har brukt en modell.
Forskere bruker alltid en modell. Og det gjør alle andre også. Modeller er den eneste måten det går an å sette tall på verden på. La oss si for eksempel at jeg lurer på hvor lang tid jeg vil bruke på å kjøre til et sted som ligger 100 km unna (og at jeg ikke har internett tilgjengelig, noe som kanskje er en litt drøy antakelse). Hvordan i all verden skal jeg finne ut av det?
Først skal jeg starte bilen, kanskje skru på radioen, og rygge ut av parkeringsplassen. Så skal jeg kjøre ut på veien der det er 30-sone, før jeg kommer til et lyskryss der jeg må vente en stund, og så kommer jeg til en vei med 50-sone, men noen ganger er det trafikk. Og så videre.
Om jeg skulle tatt med alle detaljene som finnes i virkeligheten, ville jeg aldri ha kommet frem til noe svar. Det jeg gjør istedenfor er å lage en modell. Jeg vet at jeg skal kjøre på motorvei mesteparten av veien, der jeg vil kjøre i mellom 90 og 100 kilometer i timen. Men i starten og slutten av turen skal jeg kjøre et stykke på småveier med lavere fartsgrense. Derfor lager jeg en modell som går ut på at jeg kjører hele strekningen i konstant hastighet på 80 kilometer i timen. Ved å anta en konstant men litt lavere hastighet, går jeg ut i fra at det veier opp for småveiene, tiden det tar å starte og stoppe bilen, røde lys og litt trafikk. Nå har modellen gitt meg et regnestykke: Tiden det vil ta å komme frem er lik lengden jeg skal kjøre delt på hastigheten. Svaret blir at det vil ta megen time og ett kvarter å komme meg dit jeg skal.
Ut i fra hva jeg vet om systemet jeg analyserer – hvordan trafikken vanligvis er, og hvor fort jeg pleier å kjøre – er svaret jeg kommer frem til en god antakelse. Men den trenger ikke å være riktig. Om det skjer en stor ulykke mens jeg kjører på motorveien, kan jeg ende opp med å sitte en time i kø. Eller bilen min kan få motorstopp, så jeg kanskje ikke kommer frem i det hele tatt. Jeg vet at slike ting kan skje, men at sannsynligheten er nokså lav.
Modellen kan også brukes til å finne en nedre grense for tiden jeg bruker. Det kan jo hende at jeg treffer en grønn bølge og det ikke er en eneste annen bil på veien, og at jeg får en fandenivoldsk ide om å ligge langt over fartsgrensen. Om jeg regner med en gjennomsnittshastighet på 120 kilometer i timen, vil jeg bruke 50 minutter på å komme frem. Jeg er sikker på at jeg absolutt ikke kan komme fram tidligere enn dette.
Modellen min har altså fortalt meg tre ting: En nedre grense, en mest sannsynlig verdi, og at det ikke finnes noen øvre grense for maksimaltiden, men at svært høye verdier er usannsynlige. Uten en modell hadde jeg ikke hatt noen tall i det hele tatt.

2. Ja, modellen er en forenkling av virkeligheten.
Sånn vil det alltid være. Man kan ikke regne ut virkeligheten. Virkeligheten er dugg i gresset, hull i veien og barn som protesterer. Virkeligheten er humor og humør og overtro.
Siden modeller er forenklinger, er det ikke nok å gjøre regnestykket en gang og si seg fornøyd med det. Man må sjekke hva som skjer når man varierer alle de forskjellige tallene og sammenhengene som går inn i modellen, innenfor de grensene som virker rimelige, og se hva det har å si for utfallet. Noen ting kan varieres så mye man bare vil uten at det påvirker resultatet i det hele tatt. Da kan man bestemme seg for å ta dem helt ut av modellen. Andre ting kan gi kjempeeffekter, og da er det ekstra viktig at man får disse delene så riktige som mulig. Og noen ganger kan ting virke inn på hverandre og gi helt uventede effekter.

3. Selv om virkeligheten er mye mer komplisert, stemmer resultatene av modellen.
Så lenge du ikke har regnet feil, vil resultatene av en modell gi resultater som stemmer for den virkeligheten som beskrives av modellen. Om modellen passer dårlig med virkeligheten, vil det selvfølgelig gi resultater som har mindre med den faktiske virkeligheten å gjøre. Det er her forskningen kommer inn. Det vi gjør som forskere, er å lære om hvordan vi kan bli bedre og bedre til å beskrive virkeligheten ved hjelp av tall og formler. Når resultatene av en modell viser seg å ikke stemme overens med virkeligheten, gjør vi vårt ytterste for å finne ut av hvilken del av modellen som er dårlig, og hvordan den kan gjøres bedre. Store modeller, som dem som brukes til å studere klimaet på jorda, består av svært mange mindre modeller som påvirker hverandre, og som hele tiden forbedres.

4. Om du faktisk vet noe – ikke bare som en anekdote eller en familiehistorie, men som noe som er kvalitetskontrollert og akseptert som vitenskap – er sannsynligheten stor for at forskerne som arbeider med en modell der dette er viktig, også vet om det. Det er en stor og vanskelig jobb å holde oversikt over all den nye kunnskapen som produseres, og resultatene i en vitenskapelig rapport kan godt motsies i flere andre. Dersom det faktisk er sånn at forskerne ikke har fått med seg det du vet, er du velkommen til å gjøre det arbeidet som kreves for å gjøre dataene kjent og aksepterte, eller til å overbevise andre til å gjøre arbeidet for deg eller sammen med deg.

5. For å trekke konklusjoner om klimaet på jorda, eller andre store og viktige spørsmål, er man nødt til å se på helheten. Det er derfor vi bruker disse store modellene. Når flere systemer virker inn på hverandre, kan resultatet noen ganger bli det motsatte av det som virker intuitivt riktig.

Alternativet til å bruke en modell, som ganske riktig er en forenkling av virkeligheten, kan umulig være å forenkle ting enda mer. Jeg skulle ønske jeg hadde en kort og god måte å si dette på, som jeg kunne bruke i møte med slike argumenter. Forslag mottas med takk.

(Og forresten, i tilfelle noen lurer: Jeg er ikke klimaforsker. Noe av det jeg forsker på har sammenheng med klima. Og jeg bruker modeller.)

Globe Environment World Planet Earth Blue Planet

En forenklet modell av jorda, lånt fra denne siden.

Advertisements


Legg igjen en kommentar

Hydrogenmetall

Vi trenger gode nyheter for tiden, og meldingen om at noen har greid å lage metall av hydrogen for aller første gang kan være en god kandidat.

Hva er hydrogenmetall?
Hydrogen er det minste atomet, og det grunnstoffet det finnes aller mest av i verden. Det består av ett proton og ett elektron. Vi finner det overalt i naturen, men stort sett ikke alene, fordi det er glad i å hekte seg sammen med andre stoffer. Rent hydrogen danner en gass der to og to hydrogener henger sammen i molekylform, og temperaturen må helt ned til 20 grader over det absolutte nullpunkt før denne gassen blir til en væske, for deretter å bli fast stoff ved 14 grader.
I dette faste hydrogenet, der temperaturen er nesten så lav som den kan bli, sitter atomene pent og rolig på rader og rekker, der hvert proton passer på sitt elektron. Imidlertid har det lenge vært kjent at dersom trykket blir veldig høyt, slik at hydrogenatomene blir dyttet mot hverandre med masse kraft, bør atomene gi slipp på elektronene sine. Protonene i kjernen vil ordne seg i et gitter, med alle elektronene svirrende løst rundt dem, akkurat som i et metall. Dette er det som kalles metallisk hydrogen, og forskere har brukt årtier på å prøve å fremstille det.

Hva skal vi med metallisk hydrogen?
739px-superconducting_levitation_and_candle_on_a_magnet

Med superledere kan man få ting til å sveve. Bilde: Wikimedia Commons

De teoretiske beregningene som har vært gjort tyder på at metallisk hydrogen vil være en superleder, det vil si et stoff som kan lede strøm helt uten tap. I dag sender vi elektrisiteten vår gjennom ledninger av kobber eller aluminium, og desto lengre avstand det er mellom stedet der strømmen lages og der den skal brukes, desto mer går tapt underveis. Om vi kunne lage metallisk hydrogen, og det oppførte seg stabilt ved normalt trykk og temperatur, kunne vi få mer ut av den strømmen vi lager fordi mindre av den ville gå tapt. Superledere kan også brukes til å få mer effektiv transport ved å få tog til å sveve. Vi har foreløpig ingen materialer som kan brukes som superledere ved romtemperatur.

Hvor høyt må trykket være?
Det ble først antatt at hydrogen ville gå over i metallform ved 25 GPa (det er omtrent 250 ganger høyere enn trykket i det dypeste havet i verden, Marianergropen). Senere har mer nøyaktige utregninger vist at en må opp i minst 100 GPa. Forsøk som ble gjort ved rundt 350 GPa, som tilsvarer trykket i Jordas sentrum, viste ingen tegn til metallisk hydrogen.
I eksperimentene som nettopp har blitt publisert, ble overgangen funnet ved omtrent 495 GPa.

Hvordan får man trykket så høyt?
Et greit prinsipp for å få høyt trykk er: Stor kraft, lite areal. Når forskere skal studere hva som skjer med materialer ved ekstreme trykk bruker de ofte noe som kalles diamant-ambolt-celle: To slepne diamanter plasseres med spissene pekende mot hverandre. Tuppen av spissen er polert, slik at du får to runde flater med diameter omtrent så stor som et hårstrå på tvers. Mellom disse flatene plasserer du en beholder laget av et sterkt materiale, som for eksempel rhenium, wolfram, beryllium eller diamant. Du fyller beholderen med det du ønsker å studere gjennom et lite hull som plasseres der midten av diamantspissen treffer, slik at ingenting kan komme seg ut gjennom hullet. Så plasserer du diamant-paret inne i en slags klemme, og skviser til. For å finne ut av hva som skjer inne i cella kan du skinne elektromagnetisk stråling (synlig lys, røntgen eller varmestråling) inn fra den ene siden og måle hva som kommer ut på den andre siden. Du kan også bruke elektroder for å måle hvor godt materialet i cella leder strøm, og du kan varme opp eller kjøle ned cella med laser eller flytende helium eller andre kule triks. For å vite hvilket trykk du har fått inne i cella bør du, i tillegg til materialet du ønsker å studere, legge inn noe kjent, som for eksempel en liten bit av en rubin.

Hva var det forskerne klarte nå?
Ranga Dias og Isaac Silvera ved Harvard University hadde brukt mye tid på å finne ut hvordan man skulle unngå at diamantene sprekker når trykket blir høyt. De polerte spissene og etset vekk det ytterste laget for å få vekk alle mikroskopiske ujevnheter, og varmebehandlet diamantene for å få vekk alle spenningene. Hydrogen har en irriterende tendens til å krype inn i andre materialer og gjøre dem lettere å knuse, men denne krypingen trenger temperatur for å fungere, så forskerne brukte flytende helium til å holde cellen kald. I tillegg dekket de diamantene og rhenium-kapselen med et 50 nanometer tykt lag av aluminiumoksid, som det er vanskelig for hydrogen å trenge gjennom. For å unngå temperaturutvidelser som kunne gi spenninger i diamantene, brukte de bare veldig forsiktig varmestråling til å måle på hva som skjedde inne i cella, med noen ekstra målinger med laser når de kom nær det høyeste trykket de kunne oppnå.
Da trykket nærmet seg 495 GPa ble hydrogenet først svart og deretter reflekterende, akkurat som man skulle forvente seg for et metall.

Så nå er det bare å sette i gang og produsere hydrogenmetall?
Nei, ikke helt. Resultatene var lovende, men ikke alle er overbevist. Noen mener for eksempel at forskerne kan ha blitt lurt av aluminiumoksid-laget på diamantene. Det største problemet er at, siden det er så fryktelig vanskelig å oppnå så høye trykk, er det foreløpig bare er gjort et eneste eksperiment. Eksperimentet er ikke engang avsluttet. Ifølge denne reportasjen lot forskerne det metalliske hydrogenet bli værende i kjølemaskinen sin, for å gjøre flere eksperimenter på det etter at de første resultatene var publisert. Akkurat dette virker jo litt mistenkelig. Om du har laget noe så fantastisk, vil du ikke utforske det nærmere med en gang? Hva er vitsen med å vente til det er gjort offentlig? Er de redde for at neste måling skal vise noe annet?
Så om trykkmålingen stemmer, og den optiske målemetoden er god nok til å faktisk vise at det var metall der, så gjenstår det bare å finne ut hva som skjer med stoffet når man reduserer trykket igjen, og deretter å lage en maskin som kan skvise massevis av hydrogen under enormt trykk. Så er vi i gang.


Legg igjen en kommentar

Et fjell av salt

img_6675

Vitenskapsfolk og en liten del av et stort fjell av massivt salt.

Vann har fordampet fra Dødehavet i tusener på tusener av år, og lagt igjen et flere kilometer tykt lag av salt. Etterhvert som tiden går blir saltet tynget ned av salt, sand og støv som ligger over det. Og ettersom salt har lavere tetthet enn de fleste andre mineraler (på samme måte som fett har lavere tetthet enn vann, og vil legge seg øverst i suppa) får saltet lyst til å komme seg oppover.

Det har det klart. I sørenden av Dødehavsdalen har saltet tytet opp og ut gjennom sprekker i bakken, dannet av jordskjelv, og dannet et fjell som heter Sodom. Hørt om Sodom og Gomorra? Visstnok kan man se den stakkars hustruen til Lot her, blant alle de andre saltstrukturene.

Sodomfjellet tyter fortsatt oppover med omtrent tre millimeter i året. Når det kommer litt regn, løses saltet opp og det dannes huler og merkelige strukturer.

img_6679

Jeg smakte på steinen og den smaker salt. Så det er sant.

Det at salt har en tendens til å tyte oppover er forresten viktig flere steder på jorda, for eksempel i nordsjøen der store saltstrukturer kan ha konsekvenser for hvor man kan og ikke kan finne olje.

img_6685

Utsikt over fordampingsbassengene og til Jordan, fra fjellet av salt. Mineralene som blir utvunnet fra fordampingen blir blant annet solgt til Kina og brukt i kunstgjødsel.


Legg igjen en kommentar

Rapport fra det Døde Havet

img_6642

Her er geologien i ferd med å vinne over badestrukturene.

Denne gangen har forskertilværelsen tatt meg til et sted jeg aldri egentlig hadde trodd jeg skulle reise til, nemlig Israel. Anledningen er forskernettverket vårt, NanoHeal, og vår Israelske partner har bestemt at samlingen denne gangen skulle holdes på et hotell ved Dødehavet.

Forskningen i nettverket handler om mineraler: Hvordan vokser krystaller, og hvordan løser de seg opp, når de befinner seg inneklemt mellom korn av andre materialer? Kan vi lage sterkere, bedre, mer miljøvennlige og mer holdbare materialer enn dem vi bruker i dag ved å studere hvordan biologiske organismer lager mineralene sine, som i skall og bein? Kan materialer som er laget av mineraler, sånn som betong, holde seg stabile i lang tid, sånn at vi kan bruke dem til å lagre radioaktivt avfall?
Egentlig er dette et ganske passende sted å holde et slikt møte. Her er det nemlig fullt av mineraler, som felles ut når dødehavsvannet fordamper:
img_6661

Geologi vinner over biologi. Om fem år vil dette være en del av det flere kilometer tykke saltlaget under vannoverflaten.

Egentlig stemmer det ikke helt at dette hotellet ligger ved Dødehavet. Stedet vi befinner oss på, Ein Bokek, ligger ved fordampningsdammene i den sørlige enden av sjøen. Dette var en del Dødehavet så sent som i 1972, men siden den gang har vannstanden falt med over 20 meter, og den sørlige delen ville ha vært et tørt lag med salt om det ikke hadde vært for pumpene som flytter vann fra nord til sør.
Vanlig havvann er fullt av stoffer som kan være nyttige for oss mennesker, men siden det er såpass lite av dem i hver liter vann er det for kostbart å utvinne dem. Her i Dødehavet er konsentrasjonene høyere, og ved å pumpe vannet inn i grunne bassenger, der sollyset får vann til å fordampe og de nyttige stoffene til å bli enda mer konsentrert, kan man utvinne elementer som kalium (til kunstgjødsel), magnesium og andre stoffer i form av salter.
Det er ganske overveldende å se hvordan sjøen her er fullstendig kontrollert av menneskelig aktivitet. I den ene enden, i sør, dannes et 20 cm tykt lag med salt i bunnen av fordampingsdammene hvert år. Dette gjør at hotellene må bygge strendene sine oppover, og at ved de eldste hotellene må man nå gå opp en trapp for å komme ut på stranden fra bassengområdene utendørs.
img_6647

Dette utebassenget har mistet havutsikten sin.

I nordenden er situasjonen enda mer dramatisk. Ikke bare pumpes vannet ut av sjøen for å fordampe, det har heller ikke kommet nevneverdige mengder av nytt vann inn i sjøen siden Jordanelven ble demmet opp for å brukes i jordbruket, på 60-tallet. I dag synker vannstanden i Dødehavet med over en meter i året. Dette har ikke bare ført til at det har blitt langt å gå til stranden fra hotellene i nord. Det lille regnvannet som renner over de tørrlagte breddene av sjøen, løser opp saltlagene i undergrunnen og får tusenvis av synkehull til å åpne seg og ødelegge veier og bygninger. Erosjon er et kjempeproblem, og de økologiske konsekvensene er selvfølgelig enorme.
img_6628

Erosjon på slettene ned mot den nordlige delen av Dødehavet. Utsikt fra Massada.

For å bøte på problemet med uttørring av Dødehavet, er det planer om et system av rør og kanaler som skal flytte vann fra Rødehavet og inn i Dødehavet. Underveis skal deler av vannet avsaltes og brukes som drikkevann. Dette er et stort prosjekt med mange potensielt negative konsekvenser for miljøet, i og rundt både Rødehavet og Dødehavet. Om du vil lese mer om dette prosjektet kan Wikipedia-siden være et greit sted å starte.


1 kommentar

Dommedagsargumentet

Hvor sannsynlig er det at det finnes mennesker på jorda om hundre tusen år? Eventuelt en million år?

Dette var ett av spørsmålene jeg forsøkte å svare på i gårsdagens Abels tårn. Siden en del av svaret mitt virket litt sjokkerende på tilhørerne, tenkte jeg det kunne passe bra å utdype det litt.

Hundre tusen og en million år er lange perioder i et menneskeperspektiv, men forsvinnende korte på geologisk tidsskala. Sjansen for at verden skal gå under av eksterne årsaker, som for eksempel et enormt meteorittnedslag, er små. Det er sannsynlig at klimaet gjennomgår store endringer og vi går gjennom en eller flere istider, men dette har mennesker overlevd før.

Om vi må anta at vi ikke vet noe om hva som skal skje med jorda i løpet av de neste årene, kan vi vende oss til et generelt prinsipp som er viktig i astrofysikken. Dette kalles det Kopernikanske prinsipp, oppkalt etter Kopernikus, og det er det som sier at det ikke er noe spesielt med oss. Vi bor på en helt vanlig planet, i et vanlig solsystem, i en vanlig galakse. Dette prinsippet, en slags jantelov for universet (du skal ikke tro at du er noe) har vært til stor hjelp for å forstå universets oppbygging.

Argumentet jeg skal presentere her, det såkalte Dommedagsargumentet, har blitt satt frem av Brandon Carter og J. Richard Gott III, begge astrofysikere. Det er også grunnlaget for boken The end of the world av filosofen John Leslie. Flere har argumentert mot det, blant annet astrofysiker Freeman Dyson. Det jeg skal gjøre her er å følge tankegangen i Gott sin artikkel i Nature i 1993.

Tiden

Gott sier at, på samme måte som det Kopernikanske prinsipp sier at det ikke er noe spesielt med stedet vi befinner oss, kan vi argumentere at det ikke er noe spesielt med den tiden vi lever i. Dette kan høres rart ut, fordi vi alle føler at vi lever i en spesiell tid. Men det har nok mennesker alltid syntes.

La oss anta at det ikke er noe spesielt med den tiden vi lever i. Og at om vi ser for oss at hele menneskets eksistens i tid kan strekkes ut på en linje, er det større sannsynlighet for at vi befinner oss et sted inne på linja enn at vi er helt ute på en av endene, altså begynnelsen eller slutten. Det er som om du skulle ha hundre baller, 95 svarte og fem hvite, i en boks. Om du skal gjette hvilken farge du kommer til å trekke ut, er det smartest å gjette på svart.

På denne måten kan vi si at om vi vet hvor lenge noe har vart, så er det 95% sannsynlig, altså temmelig sikkert, at dette noe allerede har vart mer enn 2,5% av tiden det kommer til å vare totalt. Det er også temmelig sikkert at mer enn 2,5% av den totale tiden fortsatt gjenstår. Dette er et helt generelt argument som bare baserer seg på at 1) du vet hvor lenge noe har vart, og 2) tidspunktet akkurat nå er helt tilfeldig.

Om vi synes at dette gir mening, kan vi bruke det til å si noe om menneskehetens totale varighet. Det forutsetter at vi vet hvor lenge det har eksistert mennesker, og at vi, som mennesker i dag, ikke er spesielle i forhold til alle andre mennesker som har levd eller kommer til å leve.

Hvor lenge har det eksistert mennesker? Man anslår at mennesket skilte lag fra de andre menneskeapene for omtrent syv millioner år siden. Dette skulle tilsi at det er sannsynlig at det finnes mennesker i mellom 180 000 år og 270 millioner år til. Man kan imidlertid diskutere hvor relevante disse forfedrene våre for syv millioner år siden er for mennesket i dag. Vi kan ta utgangspunkt i homo sapiens for omtrent 200 000 år siden, og få et tidsspenn på mellom 5 100 år og 7,8 millioner år. Om vi velger oss 40 000 år som starttidspunkt, da mennesket for alvor begynte å lage redskaper og kunst, kommer vi til et sted mellom 1000 og 1,6 millioner år. Det vil si at det er sannsynlig at vi vil ha mennesker på jorda både om 100 000 og om en million år.

Det er altså sannsynlig at det finnes mennesker på jorda, men hvilke mennesker? Hvor mange er de, og hva driver de med?

Menneskene

Det siste er det vanskelig å svare på, men det kan jo ha sammenheng med det første. Historikere har argumentert for at det å ha mange mennesker i seg selv driver sivilisasjonen fremover, fordi det gir flere ideer og mer nyskapning. Det burde derfor være svært relevant å se på hvor mange mennesker vi kan tenke oss å ha på jorda i en fjern fremtid.

Tenk deg at alle mennesker på jorda, både de som har levd og de som kommer til å leve, står stilt opp i kronologisk rekkefølge (altså etter når de ble født). På samme måte som vi argumenterte for tidslinja, kan vi si at om du skal trekke en helt tilfeldig posisjon, så er det mest sannsynlig at du velger et sted på midten. Om du er et helt tilfeldig menneske, så er det 95% sannsynlig at du ikke er blant de 2,5% første menneskene på jorda, og heller ikke blant de 2,5% siste.

Det er ikke så lett å vite hvor mange mennesker som noen gang har levd på jorda. Vi har overslag over total befolkning på forskjellige tidspunkter, men den totale befolkningsøkningen avhenger både av hvor mange som blir født og hvor mange som dør. Om det fødes veldig mange barn, men de fleste dør når de er veldig små, så blir ikke befolkningen så stor men totalt antall mennesker som blir født blir stort allikevel. Anslag for hvor mange som noen gang har blitt født, frem til nå, ligger mellom 60 og 110 milliarder mennesker.

I august 2016 levde det 7,4 milliarder mennesker på jorda. Det vil si at et sted mellom 6 og 12 % av alle mennesker som har, levd noen gang, lever akkurat nå. (Stopp opp og tenk på det et øyeblikk. Akkurat nå lever kanskje en tiendel av alle mennesker noen gang har levd på jorda. Dette er ganske sprøtt, og det har med eksponensiell vekst å gjøre, noe det kunne vært interessant å snakke mer om en annen gang.)

I følge argumentet vårt over, så er det 95% sannsynlig at antall mennesker som kommer til å bli født i fremtiden vil ligge mellom 1,5 milliarder (om vi antar totalt antall 60 milliarder) og 4290 milliarder (om vi antar 110 milliarder). Det siste høres ut som et veldig stort tall.

I 2015 ble det født 140 millioner mennesker på jorda. Om dette fortsetter – og det er en urimelig antakelse, siden antallet mennesker på jorda slett ikke er konstant, og fødselsraten er avhengig av hvor mange mennesker som finnes og kan få barn; folketallet i dag øker, men la oss allikevel bare anta at vi fortsetter med 140 millioner i året – da vil det ta 30 000 år å nå 4290 milliarder mennesker. Og det er under 10 år til nye 1,5 milliarder mennesker har blitt født. Om vi antar at det bare har vært født 60 milliarder mennesker hittil, så har vi ikke 30 000 år på oss, men 16 700 år.

Du la kanskje merke til at disse tallene er mye mindre enn anslagene jeg gav over, der jeg sa at menneskeheten kommer til å bestå på jorda i mellom 5 100 0g 7,8 millioner år. Det betyr at om vi skal ligge godt innenfor begge sannsynlighetsanslagene, er det nødt til å skje noe med den totale befolkningen på jorda.

Om menneskeheten skal bestå i 100 000 år til, så er det altså 95% sannsynlig at det innebærer at fødselsraten må reduseres drastisk, til omtrent en tredjedel av i dag. 1 million år vil innebære en fødselsrate på bare 3 % av dagens. Dette igjen vil selvfølgelig innebære at det totale antall mennesker på jorda må bli mye mindre enn det er nå. Om det skal være sannsynlig at det lever mennesker helt frem til om 7,8 millioner år, og vi skal være plassert helt tilfeldig i rekkefølgen av alle mennesker på jorda, er det bare rom for 550 000 fødsler i året. Det er 0,4% av dagens tall.

Kort oppsummert – enkel sannsynlighet tilsier at antall mennesker på jorda kommer til å nå en topp i ikke alt for fjern fremtid (årtier til maksimalt noen få årtusener) og deretter synke drastisk, og så kommer det til å leve noen veldig få mennesker her frem til de siste dør ut.

Fremtiden

Huff og huff. Hva skal man gjøre med sånne tall? Det er vanskelig å se for seg en hyggelig situasjon som fører til at antall mennesker på jorda reduseres til en tredjedel eller mindre. På den andre siden er det ikke vanskelig å se for seg hvordan disse veldig lite hyggelige situasjonene skulle oppstå, når man tenker på klimaendringer og ressursbruk på jorda.

Sannsynlighetsregning er et kraftfult middel, men det forutsetter at grunnlagsdataene er riktige. Gir det mening å si at vi er tilfeldig plassert i rekkefølgen av mennesker? Gir det mening å definere et tidspunkt der menneskeheten ble til? Er det ikke sånn at arter oppstår gradvis fra forfedre som bare er litt anderledes? Og hvordan skal vi egentlig klassifisere menneskene som lever om titusener av år, om vi da har brukt teknologi til å forandre genmaterialet vårt?

Og her er det kanskje opp til hver enkelt å komme opp med svarene.


Legg igjen en kommentar

Kjemisk potensiale i nanoporer, svømmetur og en bjørn

Jeg er på konferanse i USA, og overskriften oppsummerer dagens høydepunkter.

Hjemme er det skolestart, barnehagestart, fotballstart og korpsstart. Jeg er i New Hampshire og tenker på deformasjon av stein. Dette er en såkalt Gordon-konferanse, som holdes i en rekke fagfelter og har et veldig fint format: Tre foredrag på en time hver om morgenen, lunsj, fritid (der man sitter i sola og diskuterer vitenskap, eller drar og svømmer i en varm innsjø, som jeg fikk gjort i dag), deretter to timer med poster-session (se på og diskutere plakater som de som ikke holder foredrag har laget om forskningen sin), middag, og så to timer foredrag fra 1930 til 2130. Det kan være bittelitt vanskelig å holde seg våken på de siste foredragene. Ellers bra.

IMG_6329

Proctor Academy, nydelig sted å ha konferanse.

Tema for konferansen er «Rock Deformation», som altså betyr hvordan stein beveger på seg: Hvordan foregår store og små jordskjelv, hva vet vi egentlig om friksjon, hvordan kan man få små og store jordskjelv av å pumpe vann ned i bakken, hva skjer med krystallene i is som flyter og i stein som flyter dypt nede i jorda, og sånt. Noe som er litt rart er at det var et stort jordskjelv i Italia i natt som jeg ikke har hørt et ord om i løpet av dagen. Det henger kanskje sammen med at det er lite snakk om å forutsi jordskjelv. Det finnes folk som jobber med det, men det er vanskelig, og jeg er usikker på om noen av dem er her. For denne gjengen handler det mer om å forstå prosessene i jorda.

Jeg er så heldig å være invitert hit til å holde foredrag. Dette gjør at jeg får betalt reise, eget rom, slipper å stå og henge ved en plakat, og fikk bruke en hel time på å fortelle og svare på spørsmål om hva jeg driver med. Når jeg i tillegg fikk snakke mandag morgen, slipper jeg å være stresset resten av uka, og får masse tid til å diskutere med folk som gjør relevante ting. Det jeg har snakket om er hva som skjer mellom overflater på nanoskala, og det er det mange som er interessert i.

IMG_6327

Jeg holder foredrag.

Et av dagens høydepunkter var å sitte i sola i pausen og fundere over hvordan det kan gå for seg når korn i stein glir mot hverandre dypt nede i jordskorpen og dette får vann til å strømme fra dypet og opp mot overflaten. Her kan nanoporer, altså vannfylte hulrom som bare er noen få atomer store, være viktige. Kan jeg klare å finne ut noe om dette med mine eksperimenter?

Høydepunkt nummer to var at jeg rakk å kjøre opp til den lokale innsjøen og ta et bad i slutten av pausen.

Og høydepunkt nummer en må ha vært at jeg så en bjørn på morgenløpeturen min i skogen. Den var svart, ikke så veldig stor, og gikk vekk fra meg (heldigvis) et stykke unna. Jeg brukte resten av løpeturen på å fundere på hva man skal gjøre om man treffer en svartbjørn på stien. Skal man rygge, spille død, eller se stor og skremmende ut? Etter diskusjoner med de lokale har jeg kommet fram til at man skal prøve å skremme bjørnen, men håper jeg slipper å prøve det i morgen (om jeg i det hele tatt våkner tidlig nok til å løpe).

IMG_6335

Morgenstemning i skogen og ikke en bjørn i sikte.


Legg igjen en kommentar

og vips, så var CO2-en blitt til stein

Om det skal være mulig å nå målet om mindre enn to grader global oppvarming, er det ikke nok å slippe mer CO2 ut i atmosfæren. Vi er også nødt til å fange CO2 og gjemme den bort.

Det er godt kjent for geologer at det finnes prosesser i naturen der CO2 fra atmosfæren reagerer med mineraler som inneholder kalsium eller magnesium og danner nye mineraler, der CO2-en er en del av steinen. Slik CO2-holdig stein finnes mange steder på jorden og det er en stabil og trygg måte å oppbevare CO2 på. Spørsmålet er imidlertid hvor lang tid denne prosessen tar. Stein i naturen kommer ikke med en detaljert beskrivelse av hva som har skjedd med den og når. Geologiske prosesser tar stort sett svært lang tid.Om vi kan se at en stein har reagert med store mengder CO2, og det har gått «relativt fort», kan vi ikke egentlig si om det er noen år, noen tiår, noen hundreår eller noen tusen år. For alt dette er bare for øyeblikk å regne i den geologiske historien.

Av denne grunnen er det mange som gjør eksperimenter, og numeriske simuleringer, av hva som kan skje når man lar CO2 reagere med stein. Vil det oppstå sprekker som slipper CO2-en lengre inn i materialet og dermed lar reaksjonen går fortere? Eller vil det dannes mineraler i hulrommene nærmest der hvor man pumper inn CO2, slik at steinen blir helt tett og man ikke får inn mer?

Selv om man kan lære mye på labben og i datamaskinen får man ikke det endelige svaret før man har prøvd. Og det satte noen forskere i gang med på Island i 2012. Her har de injisert CO2 i basalt, som er den mørke vulkanske steinen man finner på Island og mange andre steder på jorda – omtrent ti prosent av jordas tørre overflate og mesteparten av havbunnen. Noen av mineralene i basalt inneholder kalsium og kan løses opp forholdsvis lett.

8986106246_6e2ce56621_z

Svartifoss på Island renner over søyler av basalt, laget av naturen helt på egenhånd. Bilde: Szecsa/Flickr/CC commons license.

Forskerne i Carbfix-prosjektet blandet ut CO2, og senere en blanding av CO2 og hydrogensulfid (siden det ofte er vanskelig å skille ut ren CO2 i industriprosesser hadde det vært fint å kunne kvitte seg med blandet gass) i vann, injiserte det omtrent 500 meter ned i bakken, og tok prøver av vannet fra samme dybde i en annen brønn 70 meter lengre bort. Og her kommer en skikkelig geologi-industri-klima-gladhistorie:

Mesteparten av den injiserte CO2-en kom ikke fram til den neste brønnen.

Beregninger viste at etter to år var 95% av den injiserte CO2-en blitt til stein.

Er det trygt? Ja, det skulle man tro. CO2-en reagerer med kalsium og danner kalsitt, som er et mineral man finner i kritt, kalkstein og en del skjell. Det var kalsitt i basalten allerede før injeksjonen av CO2. Reaksjon med det sure CO2-vannet gjorde at denne først ble løst opp, og deretter felt ut igjen. Det at det var kalsitt til stede fra før betyr at vannet som vanligvis finnes i denne steinen ikke er surt nok til å løse opp kalsitt. Så når den først er der, blir den værende.

CO2-en ble blandet ut i vann, istedenfor å bare pumpes ned som gass under trykk. Dette var for å unngå mulige utslipp av gass til overflaten. Det hjelper jo lite å gjøre en stor innsats for å dytte CO2 ned i bakken om den bare kommer opp igjen. Konsentrasjonen av CO2 i vannet er for liten til å danne gassbobler nede i brønnen. Så selv om ikke all CO2-en skulle bli til stein, ville den fortsatt bli værende i vannet nede i dypet.

Det å bruke masse vann til å bli kvitt CO2 kan høres ut som en dårlig idé. Rent vann er en knapp ressurs på jorda. Heldigvis sier forskerne at man kan bruke sjøvann i denne prosessen. Da blir det et mindre problem.

Dette er bare en av flere studier som viser at ulike former for geologisk lagring av CO2 kan være trygt. Det som gjenstår nå er incentiver for å faktisk fange og lagre CO2. Dette koster selvfølgelig penger, og ingen vil begynne med dette bare utav sin godhet. Nå er det økonomene sin tur – kom igjen, scenen er deres.