Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


1 kommentar

Oppskriften på liv

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Livets begynnelse! Det må da være det aller kuleste man kan forske på?

20130829-190138.jpg

Trinn 1: Sett sammen karboner

Du trenger karbon, for eksempel som CO2, vann og gjerne litt ekstra hydrogen. Rør rundt og tilsett energi i form av UV-stråler fra sola, lyn, varme kilder på havbunnen eller det du måtte ha tilgjengelig. Metallpartikler kan hjelpe karbonene med å finne sammen raskere.

Vips, så får du en slimete suppe som består av massevis med forkjellige organiske molekyler.

Trinn 2: Samle sammen mange like molekyler

En suppe gir ikke liv. Skal du bygge opp noe nyttig trenger du mange av de samme molekylene på samme sted. Her kan det også være nyttig med en fast overflate. På overflatene til forskjellige mineraler vil det være noen steder der en type molekyler gjerne vil oppholde seg, og noen steder som er bedre for andre.

La virke til du har samlet sammen tilstrekkelig mange av de stoffene du har lyst på.

Trinn 3: La få molekylene til å lage kopier av seg selv

Dette steget kan kanskje være litt knotete. Nå som livet har blitt så avansert og fint, har vi enzymer som tar seg av slikt. Før det kom så langt, måtte noen ekstra godt egnede mineraler fungere som liksom-enzymer. Akkurat hvordan de greide det er ikke helt klart, men det er åpenbart at det fungerte.

Tre enkle ting, det er lett som en fei. Sånn sett virker det ikke så helt utenkelig at noe lignende kan ha skjedd andre steder. Universet er jo temmelig stort. Det er ganske fint å tenke på, synes jeg.

Oppskriften er forresten en litt forenklet versjon av den som ble presentert av Robert M. Hazen (Carnegie) i dag.

Advertisements


Legg igjen en kommentar

Italienske forskere lever farlig. Og litt om skummelt norsk brønnvann

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Forskere drapsdømt etter jordskjelv

L'Aquila etter jordskjelvet. Bilde fra Wikimedia Commons.

L’Aquila etter jordskjelvet. Bilde fra Wikimedia Commons.

Det er kanskje flere av oss som husker rettssaken etter l’Aquila-jordskjelvet i 2009. I dag fikk vi historien fortalt fra professor emeritus Paolo Gasparini, en av rådgiverne til forsvarerne.

Byen L’Aquila ligger midt i et av de mest jordskjelvutsatte områdene i Italia. Små jordskjelv forekommer ofte, og statistisk sett skal et stort skjelv finne sted med 475 års mellomrom. Problemet er selvfølgelig at det ikke finnes noen gode måter å forutsi når det jordskjelv skal komme.

I januar 2009 økte jordskjelvaktiviteten, men ikke mer enn den hadde gjort flerfoldige ganger før. Etter at en tekniker ved et italiensk forskningsinstitutt hadde kommet med sitt eget varsel om et kommende stort jordskjelv (han hadde ikke vitenskapelig belegg for metoden han brukte, og ble heller ikke støttet av instituttet sitt) ble folk engstelige, og det ble satt ned en ekspertgruppe for å evaluere risikoen. Denne gruppen kunne ikke si stort mer enn at risikoen var lav (som alltid).

Seks dager senere kom det store skjelvet, og over tre hundre mennesker ble drept.

I oktober 2012 ble syv medlemmer av ekspertgruppen, hvorav en egentlig bare hadde vært der nærmest tilfeldig den dagen, dømt for uaktsomt drap på 29 personer. Disse hadde etter sigende valgt å bli værende i husene sine da jordskjelvet kom fordi de var blitt beroliget av forskernes uttalelser. Medlemmene ble dømt til seks år i fengsel og til å betale åtte millioner euro i kompensasjon til familiene.

Hva skulle forskerne ha gjort? Jordskjelv er en type naturkatastrofe der risikoen for at noe skal inntreffe er ekstremt lav, men skadene man vil få er ekstremt store. Utregninger i ettertid har vist at risikoen for et stort skjelv to timer før skjelvet var økt fra normalt 0.01 % til 0.05 %. Dette er det eneste forskerne kunne ha å kommunisere videre – forskeres rolle må være å gi et så riktig og helhetlig bilde av situasjonen som mulig, ikke å skjule deler av sannheten av frykt for virkningen det kan ha på befolkningen. Så må det være myndighetenes rolle å bruke denne informasjonen til å ta beslutningen om å evakuere eller ikke.

Etter rettssaken har man fått mye lavere terskel for evakueringer, det har blant annet vært flere episoder der barneskoler har vært evakuert etter jordskjelv som har vært rett over to på Richters skala (og det er så godt som ingen ting). Om man skal holde på sånn over tid er det ingen som hører etter i lengden.

Utarmet uran og uønskede resultater

På tirsdag fikk vi høre om en annen rettsak, som pågår akkurat nå. I Quirra på Sicilia, der det tidligere var et militært skytefelt, har lokalbefolkningen rapportert om unormalt mange tilfeller av kreft og misdannelser. Mange mener at dette skyldes bruk av utarmet uran ved skytefeltet. Geokjemikere fra Universitetet i Sienna fikk i oppgave fra forsvarsdepartementet å undersøke om det kunne finnes utarmet uran i området. De gjorde 25 000 analyser på 1500 prøver av jodr sedimenter og overflatevann, brukte metoder utviklet etter krigen i Kosovo, og fant ingen forhøyede uran-verdier.

Professor Luigi Marini er en del av forsvarsgruppen til disse forskerne, som nå er saksøkt av lokale aksjonsgrupper. I følge Luigi har aksjonsgruppen betydelig støtte fra en kjernefysiker med tilknytning til CERN. Han har kritisert forskerne for å være geokjemikere og ikke kjernefysikere.

Men altså, er det noe å saksøkes for? Og om jeg ville finne ut om jeg hadde uran i jorda i hagen min, så ville jeg nok ha prøvd geokjemikerne før kjernefysikerne.

Apropos uran

Ja apropos uran. Visste du at 30 % av norske drikkevannsbrønner har uraninnhold som ligger over grenseverdiene? Det finnes også betydelige mengder kobber og bly i en del av disse brønnene. Dette i følge Clemens Reimann fra NGU, som jeg også har hørt på denne uka. På plottene hans så det norske vannet mye skumlere ut enn alt det andre vannet han hadde tatt prøver av i Europa. Det skyldes visstnok at disse brønnene er boret i hard gneiss og granitt og at gjennomstrømmingen i dem er forholdsvis lav. Så vet vi det.


7 kommentarer

Mission accomplished

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Siden jeg fikk så mange oppmuntrende kommentarer etter panikkanfallet mitt i går synes jeg det er på sin plass med en oppdatering:

Jeg overlevde! Nervøsiteten forsvant da jeg fant meg selv innelåst på do på konferansesenteret to minutter før jeg skulle ha vært på plass. Heldigvis greide jeg å knekke låsemekanismekoden etter en fem minutters tid, mens jeg ventet på at personen jeg hadde snakket med gjennom døra skulle hente en eller annen for å gjøre et eller annet. Jeg er tydeligvis såvidt smart nok til å kunne åpne en dør.

Foredraget gikk fint, jeg fikk passe dårlig tid så jeg kunne gå fort igjennom de litt vanskelige tingene jeg hadde satt på siste slide, og jeg skalv ikke eller noe (jeg pleier egentlig å slutte å være nervøs når jeg begynner å snakke, men selv om jeg vet at det er sånn så er jeg like nervøs på forhånd).

Når han jeg hadde sittet på gulvet og hørt på i går, fordi så mange ville se ham, kom bort til meg etterpå og sa at

«This is the best explanation of disjoining pressure I have ever heard. I finally understood it. I will have to come to Norway and show you my illmenite experiments sometime»

så ble jeg ganske fornøyd.

(Det var forresten ikke meningen at dere skulle forstå det der. Det var bare for å vise hvor smart jeg er.)

Såder, nå skal jeg bare kose meg og bruke den fritiden jeg finner på nyttige ting som å spise is og kjøpe gaver til barna.


Legg igjen en kommentar

Jeg kan også redde verden (eller bidra litt, i det minste)

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Verden står på terskelen av en klimakatastrofe, og jeg bruker tiden min på å forske på stein.

Noen ganger føles det fryktelig bakstreversk. Fremtiden er solceller og vindmøller, fortiden er Oljebransjen, som man alltid ender opp med å få et nært forhold til når man driver georelatert forskning i Norge.

Det jeg forsker på er å finne ut hvordan oppsprekking og vann og kjemiske reaksjoner i stein henger i hop. I dag gav Sally Benson, professor ved Stanford, en presentasjon som viste hvorfor akkurat denne type forskning er helt nødvendig for at vi skal klare oss fremover. Dette er hvorfor:

Vi trenger materialer for å produsere fornybar energi

Det hjelper ikke å vite hvordan vi skal høste energi fra sol, vann og vind om vi ikke har de materialene som trengs for å lage solceller og vindmøller på stor skala. En del av de viktigste ingrediensene begynner vi å merke mangelen på allerede. For å finne og produsere disse materialene uten å ødelegge jorda samtidig må vi lære mer om hvordan vann, kjemiske reaksjoner, oppsprekking og biologisk aktivitet henger sammen.

Vi må gjemme unna mye CO2 i hundretusenvis av år

Vi kommer dessverre ikke til å klare å plutselig slutte å produsere CO2. En ting vi kan gjøre mens vi venter på at de fossile energikildene tar slutt, er å dytte CO2-en ned langt under bakken og håpe at den blir værende der i noen hundretusen år. Dette kan vi ikke være så sikre på uten at vi forstår, ja nemlig, hvordan oppsprekking og kjemiske reaksjoner henger sammen.

Skifergass

Rekk opp hånda, hvem vil forske på skifergass?

Ikke jeg egentlig, det er noen skikkelig skitne greier, og jeg vil helst ikke ha noe med det å gjøre.

Men skifergass er stort. Det har fullstendig snudd opp ned på energilandskapet i USA. USA slipper nå ut mindre karbondioksid fordi de bruker gass istedenfor kull. England er kanskje det neste landet som skal i gang med å hente opp skifergass fra berggrunnen.

I skifere er gassen gjemt inne i nanosmå porer, som virkelig ingen forstår noe særlig om hvordan fungerer. Om skifergassproduksjonen, som allerede er i gang, skal foregå uten å forurense alt for mye, er forskere nødt til å finne ut mer om disse systemene.

Forskning er aldri bortkastet!

Så lenge den publiseres. Vi forskere finner ut av hvordan ting fungerer, og så må vi håpe, eller passe på, at kunnskapen blir brukt til det beste for verden.


14 kommentarer

Panikk!

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jeg visste det skulle komme, men ble like fullt satt ut.

I går var jeg på ualminnelig mange elendige foredrag. I dag har jeg sett veldig mange gode. Det har, som forventet, ført meg til stadiet

HJELP!!! ALLE ER SÅ UTROLIG SMARTE!!! JEG KAN INGENTING!!! PRESENTASJONEN MIN ER DEN VERSTE AV ALLE!!!

som gir meg veldig lyst til å grave meg ned i et hull, eller til å gjøre om på hele presentasjonen min. Det gjør det helt umulig å gjøre det man bør gjøre på et sånt sted, nemlig å ta kontakt med folk, introdusere seg på en selvsikker måte og stille masse glupe spørsmål.

What to do, what to do?

Jeg vil:

– lage en helt ny presentasjon, med masse formler og vanskelige diagrammer, så alle kan se at jeg også er smart.

– alternativt prøve å glemme hele konferansen, sette meg på cafe og spise is og lese bok, på en eller annen måte få sove i natt, og utsette hele problemet til i morgen.

Jeg bør:

– ikke lage en ny presentasjon (fordi den jeg lagde på forhånd faktisk er nøye gjennomtenkt, og i denne panikktilstanden er det lite trolig at jeg skal få til noe bedre).

– ikke fylle på med flere formler og vanskelige diagrammer, fordi ingen kommer til å skjønne noe av det, og hva er poenget da.

– øve et par ganger på presentasjonen jeg har, overbevise meg selv om at det går bra, gå tilbake med hodet hevet, og snakke med folk.

Dette vet jeg jo egentlig:

– DETTE SKJER ALLE (jeg vet ikke helt om det er sant, men jeg er ganske sikker på at det gjelder flere enn meg).

– folk høres selvfølgelig ekstra smarte ut når de snakker om et fagfelt som jeg ikke er ekspert på. Om de hører på meg vil ikke mine ting virke opplagt for dem.

– og hva er det verste som kan skje? Om jeg gir konferansens dårligste foredrag, har jeg kastet bort et kvarter av folks tid. Men det er jo ikke all verden. De vil glemme det i mengden av andre dårlige foredrag.

I morgen halv ti er det uansett overstått. Nå skal jeg slutte å bruke opp tid på blogging, og heller ta frem foredraget mitt. Detta går greit.


2 kommentarer

Hvor gammel er jorda og hvordan ble den dannet?

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jorda. Bilde fra Wikimedia Commons.

Jorda. Bilde fra Wikimedia Commons.


Hvor gammel er jorda, og hvordan ble den dannet? Litt av noen spørsmål. Det er en sånne ting som man kanskje tror at noen vet svaret på allerede. Men, som vanlig i vitenskapen, er det ofte forbløffende hvor mye det gjenstår å finne ut. I dag gav Rickard Carlson, som er professor ved Department of Terrestrial Magnetism (imponerende navn) ved Carnegie, en slags oppsummering av hva man har funnet ut i det siste.

Det startet med en eksplosjon

For eksempel: Først var det jo bare masse støv. Ikke sånt støv som du har under sofaen. Mer som enkeltmolekyler. En supernovaeksplosjon «i nærheten» sendte ut en trykkbølge som dyttet dette støvet nok sammen til at det begynte å klumpe seg og henge seg sammen. Man har funnet noe materiale som stammer fra denne supernovaen.

Det ble ganske raskt (av typen ikke mange hundre millioner år) dannet små (noen hundre kilometer diameter) planetbarn. Når planetbarna har blitt så store begynner innsiden å smelte og det dannes en fast skorpe på utsiden. Noen stoffer forsvinner innover mot midten, og noen liker seg best på utsiden. Så kræsjet flere av disse planetbarna sammen og etterhvert ble jorda vår dannet.

Hva er inni jorda?

En av tingene vi faktisk ikke vet er hva jorda består av. Det er sant! Vi har ingen måte å egentlig finne ut av hva som gjemmer seg inne i midten av jorda. Forskere gjør sine beste gjetninger, putter det inn i modellene sine, og ser om de får svar som stemmer med virkeligheten. Hvor mye radioaktive stoffer har vi for eksempel inne i jorda, og hvor mye varme produserer de? Slike spørsmål kan man kanskje få et bedre svar på om man vet mer om hva som dannet jorda i utgangspunktet. Derfor jobber mange forskere for å finne ut hvordan de små planetbarna så ut før de kom sammen og lagde jorda.

Jordas alder

Når det gjelder hvor gammel jorda er, så er ikke det et helt enkelt spørsmål å svare på. Den vokste jo litt etter litt på begynnelsen, når flere og flere planetbarn klumpet seg sammen. Det er 4.4 milliarder år siden jorda truffet av den foreløpig siste enorme gjenstanden fra rommet. Massen som ble slynget ut etter denne kollisjonen, klumpet seg sammen og ble til månen vår. Siden jorda ikke har forandret seg like dramatisk etter det, kan man godt si at det var da jorda som vi kjenner den ble til. Det var ikke så lenge etter denne kollisjonen at vi fikk flytende vann. And the rest is history.


Legg igjen en kommentar

Sprekker betongen? Prøv mikrober!

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze. 

Sprukken betong kan man finne hvor som helst.

Sprukken betong kan man finne hvor som helst.

Betong er et særskilt nyttig materiale som brukes i det meste av bygninger. Problemer er bare at det har en lei tendens til å sprekke opp.

I mylderet av grusomme presentasjoner i dag (åååå hvorfor kan ikke folk bare snakke tydelig??!! Noen av disse menneskene kunne likeså godt ha sunget en sang eller vist en tegnefilm, så mye får man med seg av det de skal presentere)  fant jeg en perle. Det var doktorgradsstipendiaten Tingting Zhu fra universitetet i Toronto som fortalte en vakker historie om noen ørsmå nyttige skapninger.

En ting forskere har jobbet med i noen år er å bruke bakterier til å lage krystaller inne i sprekker i betong. Bakteriene gjør omtrent det samme som koralldyr når de bygger korallrevene sine. Det har vært et problem at disse bakteriene, i tillegg til å tette sprekker, produserer noen stoffer som ikke er så bra for miljøet.

Tingting og kollegene hennes har funnet en type mikrober som bruker CO2 og sollys til å bygge krystaller laget av kalsium, karbon og oksygen. Når man bruker elektronmikroskop til å se på disse krystallene ser de ut som vakre blomster. Uheldigvis er ikke arbeidet til Tingting publisert ennå, så hun kunne ikke la meg legge ut blomsterbildene hennes på nett. Så du må bare se for deg en bakterie, en slags tjukk liten pølse, og at ut i fra den bakterien vokser en blomst med tykke kronblader.

Etterhvert som blomsten vokser blir bakterien fullstendig dekket i det harde blomstermaterialet og den dør. Sprekken fylles av miniatyr-blomst-gravsteiner.

I første omgang har Tingting funnet ut at mikrobene hennes greier å leve og lage krystaller i de samme kjemiske omgivelsene som de vil møte inne i betongsprekker, og de klarer å bygge harde lag på betongblokker i labben. Neste skritt er å finne ut hvordan dette skal gjøres utendørs og på større skala.

Så om du har sprekker i betongen din, om noen år, kan du kanskje bestille en mikrobebehandling. Et firma kommer og sprayer først mikrober, så kalkholdig vann på betongen, og så får mikrobene jobbe og reparere det som skal repareres. I samme slengen blir du kvitt litt CO2 og får dannet oksygen. Alle tiders.