Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Er det greit å fly, så lenge vi bruker biodrivstoff?

Jeg vil gjerne snakke litt mer om flytrafikk. I politiske debatter om flyavgifter, utbygging av flyplasser og denslags hører jeg nemlig ofte dette argumentet:

«Det er bare nå at flytrafikken er et problem. I fremtiden vil flyene bruke biodrivstoff, og da har vi ikke CO2-utslipp fra flyene lengre. Vi må bygge infrastruktur for fremtidens klimavennlige fly, ikke bygge ned på grunn av begrensningene vi har i dag.»

Dette høres jo så enkelt ut. Kan det virkelig stemme?

Jeg lurer på hvor realistisk det er å fortsette med dagens mengde flytrafikk, og bytte ut alt det fossile drivstoffet med biodrivstoff.

I følge en rapport fra Verdensbanken i 2012 brukte verdens flytrafikk totalt 246 Mtoe i løpet av år 2006. Dette er en energienhet som tilsvarer 2860 TWh, eller 2 860 000 GWh. Jeg regner med at energiforbruket er høyere i 2016 enn i 2006. På den annen side har nok flyene blitt mer energieffektive. Så jeg tror det er ganske greit å bruke tallet fra 2006.

Hvor mye areal ville vi trenge for å dyrke biodrivstoff som inneholder den samme mengden energi?

Planter bruker fotosyntese til å omdanne solenergi til kjemisk energi, slik som vi har i bensin og diesel. Mengden energi som kan omdannes av planter per areal avhenger av hvor mye sol som skinner på dem, og hvor effektivt de kan omdanne denne energien. I boka «Sustainable Energy Without the Hot Air» gir David MacKay en god oversikt over energieffektiviteten til forskjellige vekster. Det mest effektive er sukkerrør i Brasil, som kan gi oss en gjennomsnittlig effekt på omtrent 1,6 W per kvadratmeter. Om vi skal dyrke biodrivstoff i Nord-Europa kan vi få omtrent 0,5 W per kvadratmeter. Disse tallene tilsvarer henholdsvis 14 og 4,4 GWh per kvadratkilometer per år.

Vi kan altså dyrke nok biodrivstoff til å drive alle verdens fly dersom vi setter av 2 860 000 GWh / 4,4 GWh/km2 = 650 000 kvadratkilometer dyrket land til å bare lage biodrivstoff, i Europa. Eller vi kan bruke 200 000 kvadratkilometer av jordbrukslandet til Brasil.

Nettsiden TrendEconomy gir en god oversikt over hvor mye dyrket land vi har i verden. I Norge har vi for eksempel litt under 10 000 kvadratkilometer. Det monner ikke mye i flysammenheng. Det dyrkede arealet til Tyskland utgjør 167 000 kvadratkilometer, så om Tyskland hadde gått hundre prosent inn for det kunne de ha dekket litt under en fjerdedel av drivstoffbehovet til luftfarten.

Totalt dyrket areal i EU er 1 863 000 kvadratkilometer. Vi kunne nøye oss med en tredjedel av dette. Eller vi kunne ha klart oss med 7 prosent av Brasil sitt dyrkede areal, som er på 2 788 000 kvadratkilometer.

Dette er ekstremt forenklede beregninger, men sånne øvelser kan være nyttige. For eksempel gjelder tallene jeg har brukt er for de aller mest effektive plantene. Egentlig er mange enige om at vi trenger å bruke arealet vårt til å dyrke mat til verdens voksende befolkning, og at biodrivstoff skal lages av det vi kan kalle «avfall» fra annen planteproduksjon. For å få nok energi av dette må vi nødvendigvis ha enormt mye større arealer tilgjengelig.

For meg betyr ihvertfall dette at jeg ikke tror problemet med hyppig langdistansetransport av veldig mange mennesker har noen enkel løsning. Vær så snill og vær litt skeptisk neste gang du hører en politiker påstå noe annet.

(siden jeg sitter på buss og skriver og nettet er litt treigt, har jeg ikke fått wordpress-editoren til å fungere sånn som den pleier og jeg har ikke fått inn lenker. Derfor kommer de her:

Rapporten til Verdensbanken om energibruk i lufttransport – http://siteresources.worldbank.org/INTAIRTRANSPORT/Resources/TP38.pdf

Sustainable Energy Without the Hot Air – http://www.withouthotair.com/c6/page_43.shtml

TrendEconomy, arealstatistikk – http://data.trendeconomy.com/industries/Agricultural_Land_Total/Brazil?country=EuropeanUnion )


Legg igjen en kommentar

Klimasnill langtur?

I morgen får vi en ny doktor i familien, for da skal lillesøster forsvare doktoravhandlingen sin. Hurra! Tittelen er Exploring the Relevance of Uncertainty in the Life Cycle Assessment of Forest Products. Sånn passe tørt som en tittel på en doktorgrad skal være. I teorien er dette veldig spennende og ikke minst veldig viktig, siden det handler om hvordan vi kan få gjøre samfunnet mer bærekraftig og verden mindre utrivelig for fremtidige generasjoner.

Dette blir det selvfølgelig stort å være med på, men det er litt kjedelig at begivenhetene finner sted fryktelig langt borte, nemlig i Umeå. Og siden jeg har bestemt meg for å fly litt mindre, og det faktisk går an å komme seg til Umeå med tog fra Oslo, så er det sånn det foregår. Ettermiddagstog fra Oslo til Stockholm, og nattog videre til Umeå (luksuskupé med bare en seng, og egen dusj og do!). Toget fra Oslo er foreløpig bare en time forsinket, og siden toget til Umeå ligger bak oss i løypa skal dette gå greit. Jeg håper jeg får sove nok til å holde meg våken gjennom utspørringene i morgen.

IMG_5715

Å kjøre tog alene er helt glimrende. Man kan jobbe. Internett er det også. 

Spørsmålet er: Hvor klimavennlig er jeg egentlig nå?

Dette spørsmålet er slett ikke så lett å svare på som jeg skulle ønske – man må gjøre en hel masse antagelser før man får noen tall å sammenligne. Om jeg skulle tatt fly, hvor mange passasjerer skulle jeg ha delt det med? Var det et nytt eller gammelt, stort eller lite fly? Hvor kommer strømmen til toget fra? Har vi ikke solgt ut all vannkraften vår som klimasertifikater til Europa? Hvor mye energi går med på å vedlikeholde togskinner og rullebaner?

Jeg føler meg ganske komfortabel med å bruke tall fra transportogmiljo.no, der både Cicero, CIENS og TØI (solide klima- og transportforskningsmiljøer) er involvert. Her finner jeg følgende:

Et elektrisk tog bruker 0.12 kWh elektrisitet per person per kilometer, og utslippet per kWh er 210g CO2-ekvivalenter for en «nordisk energimiks» (altså ikke bare ren norsk vannkraft, men det synes jeg er greit når jeg kjører tog i Sverige). Disse tallene er tatt herfra.

For korte flyreiser (under 800 km) kan man beregne 400 g CO2-ekvivalenter per person per kilometer (tall herfra).

Min togreise er slik: Oslo-Stockholm, 523 km (i følge Google maps, om jeg hadde kjørt bil); deretter Stockholm-Umeå, 639 km. Jeg regner med at avstanden for fly blir litt kortere. For å være raus mot flytransporten kan jeg si 450 km Oslo-Stockholm og 550 km Stockholm-Umeå, altså 1000 km til sammen. Det gjør det lett å regne: 1000 km * 400 g CO2-ekvivalenter blir til sammen 400 kg utslipp.

Regnestykket for toget blir dette: 0.12 kWh/km * 210 g/kWh * (523 km + 639 km) = 29 kg utslipp.

Dette så jo fint ut. Jeg kan kjøre  denne reisen 14 ganger med tog før jeg har gjort like mye skade som jeg ville ha gjort med en flyreise.

Men – riktig så enkelt er det ikke. Jeg hadde oversett et tall om togene: Nettsiden oppgir at det koster 7 g CO2-ekvivalenter per personkilometer i vedlikehold av skinner og slikt. Dette gir meg 81 kg ekstra, mer enn dobbelt så mye som for strømmen til toget! Og plutselig var det mindre enn fire ganger verre å kjøre fly.

Her synes jeg ofte det strander i slike diskusjoner. Avhengig av hvordan man setter opp regnestykket, kan man komme frem til tall som gir akkurat det resultatet man er ute etter.  Hvor ble det for eksempel av vedlikeholdet av flyene? Utslipp i forbindelse med avising? Kjøreturen ut til flyplassen?

Nå synes jeg plutselig at min søsters doktorgradsavhandling ble superrelevant, og om det er vanskelig å sove på nattoget kan jeg kanskje lese og få noen svar – eller bare finne ut at alt er så komplisert at man bare må legge hodet på puta og sovne.

IMG_5718

Om svensk skog, i svensk skog.


1 kommentar

Nytt leketøy på plass!

Nå er labben enda kulere, for vi har fått en splitter ny AFM. Forkortelsen står for Atomic Force Microscope, noe som muligens kunne oversettes som atomkraftmikroskop, men det har ingenting med atomkraft (kjernekraft) å gjøre. Det AFM-en gjør er å måle kraften mellom en spiss nål og en overflate. Og om nålen er spiss nok, og det ikke er vibrasjoner i rommet og man stiller inn alle parametere riktig og så videre og så videre, så kan man gjøre dette så nøyaktig at man kan få et bilde av enkeltatomer på overflaten. Derav atomkraft – krefter mellom atomer.

I første omgang skal vi bruke det til to ting:

  1. «Ta bilder» av mineraloverflater. Vi kan gjøre eksperimenter inne i AFM-en, der vi har mineraler (enkeltkrystaller, altså) i en væske og ser på hvordan overflaten forandrer seg på nanoskala når den vokser eller løses opp. Eller vi kan ta bilder av overflater før og etter at vi har gjort ting med dem i andre eksperimenter.
  2. Måle krefter mellom overflater. Da bruker vi ikke en tynn nål, men limer fast en partikkel på «pinnen» nålen vanligvis er festet til. Det er dette jeg har gjort i eksperimenter som jeg har skrevet om på bloggen tidligere (her, for eksempel).

De siste eksperimentene gjør vi for å finne ut mer om hva som skjer når møtet mellom vann og stein gjør at steinen forandrer egenskaper. Nå er det ikke bare jeg som gjør eksperimentene: En PhD student, som allerede har gjort noen av dem i København, skal begynne på vår maskin neste uke. Og på slutten av året kommer en postdoc som skal gjøre lignende ting.

Vi fikk penger til å kjøpe denne utrolig kule maskinen som del av et ERC-prosjekt som Bjørn Jamtveit, professor ved PGP, fikk nylig. Det lønner seg altså å blande seg inn i store prosjekter. Før jul var jeg og Francois Renard, fransk professor tilknyttet PGP, på en tre dagers reise i Tyskland der vi besøkte forskjellige AFM-produsenter og fikk demonstrert utstyret deres og de alle gjorde sitt beste for å overtale oss til å kjøpe deres maskin. Etterpå  måtte vi skrive en utlysning til et offentlig anbud og vurdere tilbudene vi fikk. Ganske stressende og kompliserte greier, men heldigvis får vi glimrende hjelp fra fakultetet til slike prosesser (jeg gjorde jo det samme for SFA-en, så jeg begynner å bli dreven).

Forrige uke var temmelig intensiv og tettpakket med installering, demonstrering og opplæring på alt utstyret. Men nå er det på plass og jeg gleder meg som bare det til å komme i gang med å titte på ting på nanoskala. Med de to instrumentene vi har på labben nå (atomkraftmikroskopet og overflatekraftmikroskopet) kan vi få et ganske utfyllende bilde av hvordan forskjellige overflater påvirker hverandre når de er i kontakt. Jeg skal passe på å få lagt ut noen fancy AFM-bilder på bloggen etterhvert.


4 kommentarer

Dråpefysikk med lego

Vi ville at studentene på denne forskerskolen skulle få gjøre et praktisk eksperiment i tillegg til all kvantemekanikken og molekylærdynamikken. Men det er jo ikke alt vi gjør på labben som så enkelt lar seg transportere til et hotell på Gran Canaria og gjennomføres av 15 studenter på en gang. Heldigvis kan man lære mye av å studere dråper.

Utstyr: Utrolig kule, små lommelykt-aktige USB-mikroskop av typen DinoLite. Kalsittkrystaller, mikroskopglass, pipetter, vann, olje, sprit, hansker, skalpeller, og ikke minst tape, lego og lommelykten på mobilen.

IMG_5080

Resultat: Vinkelen mellom dråpen og underlaget varierer ut i fra hva du har hatt på underlaget før. Helt nye overflater av kalsittkrystaller fukter vann utrolig bra. Vinkelen for en dråpe som utvider seg er større enn en som krymper. Når en dråpe fordamper, beveger kontaktlinjen seg innover i periodiske rykk. Observasjoner stemmer overens med simuleringer tidligere i uken, med en del tolkning.

Nå er det snø på toppene her i syden, så det er på tide å dra hjem til vinterferien. Heldigvis er en av veiene til flyplassen fortsatt åpen.

IMG_5100


Legg igjen en kommentar

Fysikksydentur

Hjemme er denne uka full av foreldremøter, karneval, vennegrupper og fotballtreninger, men jeg er ikke med på noe av det, for jeg er på jobb på Gran Canaria. IMG_5053.JPG

Her er det vår og fint og sol. Dette er en forskerskole for doktorgradsstudenter i et europeisk nettverksprosjekt med fokus på overflateprosesser på nanoskala i sement og lignende materialer. Poenget med å møtes på dette hotellet midt inne på øya på Gran Canaria er at vi skal være sammen hele tiden og snakke masse vitenskap med hverandre.

Vi startet dagen med to timer forelesning om kvantemekaniske beregninger. Så skulle studentene ha to timer skrivekurs, men siden jeg ikke er student fikk jeg gå en tur.

IMG_5050

 

Nå gjør studentene kvantemekaniske beregninger, som jeg lurte på om jeg skulle bli med på, men jeg begynte å synes at jeg skulle ha jobbet med de forelesningene jeg selv skal holde, så da gikk jeg på rommet mitt (og skrev blogg?). Til arbeid!

IMG_5054.JPG


Legg igjen en kommentar

Menthos og cola!

På torsdag hadde jeg gleden av å snakke om fysikk for 200 videregående-elever på besøk på Blindern. Siden jeg fikk lov til å snakke om hva jeg ville, sørget jeg for et tema som passet til å gjøre menthos i cola-trikset. For det er gøy.

Siden jeg ikke har gjort dette så ofte, måtte vi trene hjemme kvelden før. Da jeg foreslo at jeg skulle bruke hele menthospakken løp barna og gjemte seg. Det viste seg i ettertid at de hadde gjort noe litt mer heftig i barnehagen – nemlig å helle en hel menthospakke i colaflasken, sette på lokket, og deretter se flaska eksplodere – så det var ikke så rart at de var skeptiske til å gjøre dette hjemme. Vi ble enige om å bruke fire menthos, og det gav en gøyal men lett å tørke opp colavulkan.

Screenshot 2016-02-13 09.18.44

Hva er det som skjer?

Når man lager brus, tilsetter man CO2 under høyt trykk. Desto høyere trykket er, desto flere CO2-molekyler er det plass til i vannet. Når flasken åpnes, faller trykket plutselig og gassmolekylene får veldig lyst til å unslippe. Men det er ikke så lett. De kan slippe unna ved luftoverflaten i toppen, men veien dit er evig lang for molekylene langt nede i flaska. Den andre rømningsveien er gjennom bobler, men disse boblene er det ganske vanskelig å lage. Derfor befinner colaen i den åpnede flasken seg i en metastabil tilstand. Det betyr at den ikke trives sånn som den har det, men at den ikke greier å ta steget over i en mer stabil tilværelse.

Menthosene jeg slipper i flaska har en ru overflate av et stoff som vannet ikke liker. Her har gassmolekylene en glimrende anledning til å samle seg og danne bobler. så stiger boblene opp til overflaten, drar med seg vann og sukker oppover og lager en skumfontene. Det er sukkeret og fargen og andre stoffer i menthosene og colaen som gir det morsomme skummet – det samme skjer om du heller sand i farris, men med en mye mindre og kjedeligere fontene.

Google har forresten fortalt meg at det blir enda bedre om du bruker lettbrus. Og hvis du vil gjøre det skikkelig profesjonelt kan du kjøpe spesialdesignede menthosholdere fra Andreas Wahl.

 

Hva med gravitasjonsbølgene?

Jada, det var viktigere ting som skjedde på torsdag. Helt revolusjonerende fantastisk, faktisk. Det kan du lese om på Maria Hammerstrøm sin blogg.


Legg igjen en kommentar

Ørkenbillen og det forsinkede flyet

I den namibiske ørkenen, der ingen skulle tru at nokon kunne bu, lever en bille ved navn Stenocara gracilipes. Om morgenen, når tåken ruller inn fra havet, klatrer billen opp på toppen av en sanddyne og stiller seg med rumpa opp. Etterhvert danner det seg vanndråper på ryggen til billen. Når dråpene har blitt store nok, løsner de og triller nedover til billens munn. Slik blir den stående til den har fått nok vann til å klare seg resten av dagen.

5727784378_89665f9f1c_z

Namibisk ørkenbille. Denne heter Onymacris unguicularis, men fungerer på samme måte som vår venn stenocara. Bilde: James Anderson/Flickr/CC license

Det som får dråpene til å vokse er at ryggen til billen er dekket av et mønster med hydrofile, vannelskende, humper på en hyrofob, vannhatende, bakgrunn. Vannet i tåken fester seg til de hydrofile humpene og bygger seg opp til større og større dråper, som ikke vil spre seg utover på det hydrofobe underlaget. Siden de har en relativt liten overflate å henge seg fast i, løsner de når de har kommet over en viss størrelse, og kan trille fritt nedover som en dråpe på et marikåpeblad.

Denne geniale billeteknologien har forskere en god stund brukt som utgangspunkt for overflater som kan høste drikkevann fra luftfuktighet i tørre områder. Men det er mer. Som vi kjenner godt til, kan fuktig luft fryse på overflater. Dette kan skape forsinkelser i flytrafikken fordi flyene må stå i kø for å komme bort til den sci-fi aktige avisningsmaskinen. Her sprayes gufne eller mindre gufne kjemikalier på flyvingene for å senke frysepunktet, slik at det blir mindre sjanse for nedising. Kanskje ørkenbillen kan gi oss et hint om hvordan dette kan gjøres bedre?

Svaret er selvfølgelig ja, og her kommer oppdagelsene på løpende bånd. I desember i fjor ble det publisert en artikkel der man viser hvordan avisingen kan gjøres bedre ved å spraye på frostvæsken som små dråper istedenfor en sammenhengende hinne. De små dråpene av frostvæske er nemlig slik at de gjerne vil ha mer vann i seg. Når vanndampen kommer i nærheten av disse dråpene, og får valget mellom å starte en ny liten dråpe på underlaget ved siden av eller å hoppe inn i frostvæskedråpen, velger de helst det siste. Om  disse dråpene legges med passe stort mellomrom, vil de dermed holde overflaten tørr mellom seg. Vannet som har havnet i frostvæsken blandes fort med resten av dråpen, slik at frysepunktet holdes lavt. Om man legger frostvæsken jevnt utover hele flyvingen, skjer blandeprosessen treigere, og det vil lettere kunne dannes et lag med nesten rent vann på toppen av hinnen, som kan fryse til is. Derfor er dråpemetoden mer effektiv.

Det neste forslaget, som ble publisert i Nature nå i januar, er å kle flyvingen i en ørkenbille-drakt. Da vil vannet samle seg på de vannelskende flekkene, med tørre områder imellom, som i eksempelet over. I dette tilfellet fryser vanndråpene ganske kjapt til is. Men, siden flekkene sitter forholdsvis langt fra hverandre, utvikler ikke dette seg til et sammenhengende ispanser. Kan det være bedre å få litt is på flyvingen, på en kontrollert måte, enn plutselig og ukontrollert isvekst? Isåfall kan dette være veien å gå.