Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Om å bruke modeller til å forstå verden

Jeg synes ofte at kritikk mot forskning, det kan være klimaforskning eller det kan være annet som har med store og viktige spørsmål å gjøre, går omtrent slik:

1. Her har forskerne brukt en modell.
2. Modellen er en forenkling av virkeligheten.
3. Siden virkeligheten er mye mer komplisert, stemmer ikke resultatene av modellen.
4. Jeg vet mye om [fyll inn det som passer, for eksempel hvordan skyer dannes, hvor fort CO2 løses opp i havet, eller historiske temperaturverdier på hytta]. Dette har ikke forskerne fått med i modellen sin.
5. Om de hadde tatt med det som jeg vet, hadde de funnet ut at [fyll inn det som passer, for eksempel at jorda blir kaldere istedenfor varmere].

Dette er jeg litt lei av. Her er hvorfor:

1. Ja, forskerne har brukt en modell.
Forskere bruker alltid en modell. Og det gjør alle andre også. Modeller er den eneste måten det går an å sette tall på verden på. La oss si for eksempel at jeg lurer på hvor lang tid jeg vil bruke på å kjøre til et sted som ligger 100 km unna (og at jeg ikke har internett tilgjengelig, noe som kanskje er en litt drøy antakelse). Hvordan i all verden skal jeg finne ut av det?
Først skal jeg starte bilen, kanskje skru på radioen, og rygge ut av parkeringsplassen. Så skal jeg kjøre ut på veien der det er 30-sone, før jeg kommer til et lyskryss der jeg må vente en stund, og så kommer jeg til en vei med 50-sone, men noen ganger er det trafikk. Og så videre.
Om jeg skulle tatt med alle detaljene som finnes i virkeligheten, ville jeg aldri ha kommet frem til noe svar. Det jeg gjør istedenfor er å lage en modell. Jeg vet at jeg skal kjøre på motorvei mesteparten av veien, der jeg vil kjøre i mellom 90 og 100 kilometer i timen. Men i starten og slutten av turen skal jeg kjøre et stykke på småveier med lavere fartsgrense. Derfor lager jeg en modell som går ut på at jeg kjører hele strekningen i konstant hastighet på 80 kilometer i timen. Ved å anta en konstant men litt lavere hastighet, går jeg ut i fra at det veier opp for småveiene, tiden det tar å starte og stoppe bilen, røde lys og litt trafikk. Nå har modellen gitt meg et regnestykke: Tiden det vil ta å komme frem er lik lengden jeg skal kjøre delt på hastigheten. Svaret blir at det vil ta megen time og ett kvarter å komme meg dit jeg skal.
Ut i fra hva jeg vet om systemet jeg analyserer – hvordan trafikken vanligvis er, og hvor fort jeg pleier å kjøre – er svaret jeg kommer frem til en god antakelse. Men den trenger ikke å være riktig. Om det skjer en stor ulykke mens jeg kjører på motorveien, kan jeg ende opp med å sitte en time i kø. Eller bilen min kan få motorstopp, så jeg kanskje ikke kommer frem i det hele tatt. Jeg vet at slike ting kan skje, men at sannsynligheten er nokså lav.
Modellen kan også brukes til å finne en nedre grense for tiden jeg bruker. Det kan jo hende at jeg treffer en grønn bølge og det ikke er en eneste annen bil på veien, og at jeg får en fandenivoldsk ide om å ligge langt over fartsgrensen. Om jeg regner med en gjennomsnittshastighet på 120 kilometer i timen, vil jeg bruke 50 minutter på å komme frem. Jeg er sikker på at jeg absolutt ikke kan komme fram tidligere enn dette.
Modellen min har altså fortalt meg tre ting: En nedre grense, en mest sannsynlig verdi, og at det ikke finnes noen øvre grense for maksimaltiden, men at svært høye verdier er usannsynlige. Uten en modell hadde jeg ikke hatt noen tall i det hele tatt.

2. Ja, modellen er en forenkling av virkeligheten.
Sånn vil det alltid være. Man kan ikke regne ut virkeligheten. Virkeligheten er dugg i gresset, hull i veien og barn som protesterer. Virkeligheten er humor og humør og overtro.
Siden modeller er forenklinger, er det ikke nok å gjøre regnestykket en gang og si seg fornøyd med det. Man må sjekke hva som skjer når man varierer alle de forskjellige tallene og sammenhengene som går inn i modellen, innenfor de grensene som virker rimelige, og se hva det har å si for utfallet. Noen ting kan varieres så mye man bare vil uten at det påvirker resultatet i det hele tatt. Da kan man bestemme seg for å ta dem helt ut av modellen. Andre ting kan gi kjempeeffekter, og da er det ekstra viktig at man får disse delene så riktige som mulig. Og noen ganger kan ting virke inn på hverandre og gi helt uventede effekter.

3. Selv om virkeligheten er mye mer komplisert, stemmer resultatene av modellen.
Så lenge du ikke har regnet feil, vil resultatene av en modell gi resultater som stemmer for den virkeligheten som beskrives av modellen. Om modellen passer dårlig med virkeligheten, vil det selvfølgelig gi resultater som har mindre med den faktiske virkeligheten å gjøre. Det er her forskningen kommer inn. Det vi gjør som forskere, er å lære om hvordan vi kan bli bedre og bedre til å beskrive virkeligheten ved hjelp av tall og formler. Når resultatene av en modell viser seg å ikke stemme overens med virkeligheten, gjør vi vårt ytterste for å finne ut av hvilken del av modellen som er dårlig, og hvordan den kan gjøres bedre. Store modeller, som dem som brukes til å studere klimaet på jorda, består av svært mange mindre modeller som påvirker hverandre, og som hele tiden forbedres.

4. Om du faktisk vet noe – ikke bare som en anekdote eller en familiehistorie, men som noe som er kvalitetskontrollert og akseptert som vitenskap – er sannsynligheten stor for at forskerne som arbeider med en modell der dette er viktig, også vet om det. Det er en stor og vanskelig jobb å holde oversikt over all den nye kunnskapen som produseres, og resultatene i en vitenskapelig rapport kan godt motsies i flere andre. Dersom det faktisk er sånn at forskerne ikke har fått med seg det du vet, er du velkommen til å gjøre det arbeidet som kreves for å gjøre dataene kjent og aksepterte, eller til å overbevise andre til å gjøre arbeidet for deg eller sammen med deg.

5. For å trekke konklusjoner om klimaet på jorda, eller andre store og viktige spørsmål, er man nødt til å se på helheten. Det er derfor vi bruker disse store modellene. Når flere systemer virker inn på hverandre, kan resultatet noen ganger bli det motsatte av det som virker intuitivt riktig.

Alternativet til å bruke en modell, som ganske riktig er en forenkling av virkeligheten, kan umulig være å forenkle ting enda mer. Jeg skulle ønske jeg hadde en kort og god måte å si dette på, som jeg kunne bruke i møte med slike argumenter. Forslag mottas med takk.

(Og forresten, i tilfelle noen lurer: Jeg er ikke klimaforsker. Noe av det jeg forsker på har sammenheng med klima. Og jeg bruker modeller.)

Globe Environment World Planet Earth Blue Planet

En forenklet modell av jorda, lånt fra denne siden.

Advertisements


Legg igjen en kommentar

og vips, så var CO2-en blitt til stein

Om det skal være mulig å nå målet om mindre enn to grader global oppvarming, er det ikke nok å slippe mer CO2 ut i atmosfæren. Vi er også nødt til å fange CO2 og gjemme den bort.

Det er godt kjent for geologer at det finnes prosesser i naturen der CO2 fra atmosfæren reagerer med mineraler som inneholder kalsium eller magnesium og danner nye mineraler, der CO2-en er en del av steinen. Slik CO2-holdig stein finnes mange steder på jorden og det er en stabil og trygg måte å oppbevare CO2 på. Spørsmålet er imidlertid hvor lang tid denne prosessen tar. Stein i naturen kommer ikke med en detaljert beskrivelse av hva som har skjedd med den og når. Geologiske prosesser tar stort sett svært lang tid.Om vi kan se at en stein har reagert med store mengder CO2, og det har gått «relativt fort», kan vi ikke egentlig si om det er noen år, noen tiår, noen hundreår eller noen tusen år. For alt dette er bare for øyeblikk å regne i den geologiske historien.

Av denne grunnen er det mange som gjør eksperimenter, og numeriske simuleringer, av hva som kan skje når man lar CO2 reagere med stein. Vil det oppstå sprekker som slipper CO2-en lengre inn i materialet og dermed lar reaksjonen går fortere? Eller vil det dannes mineraler i hulrommene nærmest der hvor man pumper inn CO2, slik at steinen blir helt tett og man ikke får inn mer?

Selv om man kan lære mye på labben og i datamaskinen får man ikke det endelige svaret før man har prøvd. Og det satte noen forskere i gang med på Island i 2012. Her har de injisert CO2 i basalt, som er den mørke vulkanske steinen man finner på Island og mange andre steder på jorda – omtrent ti prosent av jordas tørre overflate og mesteparten av havbunnen. Noen av mineralene i basalt inneholder kalsium og kan løses opp forholdsvis lett.

8986106246_6e2ce56621_z

Svartifoss på Island renner over søyler av basalt, laget av naturen helt på egenhånd. Bilde: Szecsa/Flickr/CC commons license.

Forskerne i Carbfix-prosjektet blandet ut CO2, og senere en blanding av CO2 og hydrogensulfid (siden det ofte er vanskelig å skille ut ren CO2 i industriprosesser hadde det vært fint å kunne kvitte seg med blandet gass) i vann, injiserte det omtrent 500 meter ned i bakken, og tok prøver av vannet fra samme dybde i en annen brønn 70 meter lengre bort. Og her kommer en skikkelig geologi-industri-klima-gladhistorie:

Mesteparten av den injiserte CO2-en kom ikke fram til den neste brønnen.

Beregninger viste at etter to år var 95% av den injiserte CO2-en blitt til stein.

Er det trygt? Ja, det skulle man tro. CO2-en reagerer med kalsium og danner kalsitt, som er et mineral man finner i kritt, kalkstein og en del skjell. Det var kalsitt i basalten allerede før injeksjonen av CO2. Reaksjon med det sure CO2-vannet gjorde at denne først ble løst opp, og deretter felt ut igjen. Det at det var kalsitt til stede fra før betyr at vannet som vanligvis finnes i denne steinen ikke er surt nok til å løse opp kalsitt. Så når den først er der, blir den værende.

CO2-en ble blandet ut i vann, istedenfor å bare pumpes ned som gass under trykk. Dette var for å unngå mulige utslipp av gass til overflaten. Det hjelper jo lite å gjøre en stor innsats for å dytte CO2 ned i bakken om den bare kommer opp igjen. Konsentrasjonen av CO2 i vannet er for liten til å danne gassbobler nede i brønnen. Så selv om ikke all CO2-en skulle bli til stein, ville den fortsatt bli værende i vannet nede i dypet.

Det å bruke masse vann til å bli kvitt CO2 kan høres ut som en dårlig idé. Rent vann er en knapp ressurs på jorda. Heldigvis sier forskerne at man kan bruke sjøvann i denne prosessen. Da blir det et mindre problem.

Dette er bare en av flere studier som viser at ulike former for geologisk lagring av CO2 kan være trygt. Det som gjenstår nå er incentiver for å faktisk fange og lagre CO2. Dette koster selvfølgelig penger, og ingen vil begynne med dette bare utav sin godhet. Nå er det økonomene sin tur – kom igjen, scenen er deres.


Legg igjen en kommentar

Klimasnill langtur?

I morgen får vi en ny doktor i familien, for da skal lillesøster forsvare doktoravhandlingen sin. Hurra! Tittelen er Exploring the Relevance of Uncertainty in the Life Cycle Assessment of Forest Products. Sånn passe tørt som en tittel på en doktorgrad skal være. I teorien er dette veldig spennende og ikke minst veldig viktig, siden det handler om hvordan vi kan få gjøre samfunnet mer bærekraftig og verden mindre utrivelig for fremtidige generasjoner.

Dette blir det selvfølgelig stort å være med på, men det er litt kjedelig at begivenhetene finner sted fryktelig langt borte, nemlig i Umeå. Og siden jeg har bestemt meg for å fly litt mindre, og det faktisk går an å komme seg til Umeå med tog fra Oslo, så er det sånn det foregår. Ettermiddagstog fra Oslo til Stockholm, og nattog videre til Umeå (luksuskupé med bare en seng, og egen dusj og do!). Toget fra Oslo er foreløpig bare en time forsinket, og siden toget til Umeå ligger bak oss i løypa skal dette gå greit. Jeg håper jeg får sove nok til å holde meg våken gjennom utspørringene i morgen.

IMG_5715

Å kjøre tog alene er helt glimrende. Man kan jobbe. Internett er det også. 

Spørsmålet er: Hvor klimavennlig er jeg egentlig nå?

Dette spørsmålet er slett ikke så lett å svare på som jeg skulle ønske – man må gjøre en hel masse antagelser før man får noen tall å sammenligne. Om jeg skulle tatt fly, hvor mange passasjerer skulle jeg ha delt det med? Var det et nytt eller gammelt, stort eller lite fly? Hvor kommer strømmen til toget fra? Har vi ikke solgt ut all vannkraften vår som klimasertifikater til Europa? Hvor mye energi går med på å vedlikeholde togskinner og rullebaner?

Jeg føler meg ganske komfortabel med å bruke tall fra transportogmiljo.no, der både Cicero, CIENS og TØI (solide klima- og transportforskningsmiljøer) er involvert. Her finner jeg følgende:

Et elektrisk tog bruker 0.12 kWh elektrisitet per person per kilometer, og utslippet per kWh er 210g CO2-ekvivalenter for en «nordisk energimiks» (altså ikke bare ren norsk vannkraft, men det synes jeg er greit når jeg kjører tog i Sverige). Disse tallene er tatt herfra.

For korte flyreiser (under 800 km) kan man beregne 400 g CO2-ekvivalenter per person per kilometer (tall herfra).

Min togreise er slik: Oslo-Stockholm, 523 km (i følge Google maps, om jeg hadde kjørt bil); deretter Stockholm-Umeå, 639 km. Jeg regner med at avstanden for fly blir litt kortere. For å være raus mot flytransporten kan jeg si 450 km Oslo-Stockholm og 550 km Stockholm-Umeå, altså 1000 km til sammen. Det gjør det lett å regne: 1000 km * 400 g CO2-ekvivalenter blir til sammen 400 kg utslipp.

Regnestykket for toget blir dette: 0.12 kWh/km * 210 g/kWh * (523 km + 639 km) = 29 kg utslipp.

Dette så jo fint ut. Jeg kan kjøre  denne reisen 14 ganger med tog før jeg har gjort like mye skade som jeg ville ha gjort med en flyreise.

Men – riktig så enkelt er det ikke. Jeg hadde oversett et tall om togene: Nettsiden oppgir at det koster 7 g CO2-ekvivalenter per personkilometer i vedlikehold av skinner og slikt. Dette gir meg 81 kg ekstra, mer enn dobbelt så mye som for strømmen til toget! Og plutselig var det mindre enn fire ganger verre å kjøre fly.

Her synes jeg ofte det strander i slike diskusjoner. Avhengig av hvordan man setter opp regnestykket, kan man komme frem til tall som gir akkurat det resultatet man er ute etter.  Hvor ble det for eksempel av vedlikeholdet av flyene? Utslipp i forbindelse med avising? Kjøreturen ut til flyplassen?

Nå synes jeg plutselig at min søsters doktorgradsavhandling ble superrelevant, og om det er vanskelig å sove på nattoget kan jeg kanskje lese og få noen svar – eller bare finne ut at alt er så komplisert at man bare må legge hodet på puta og sovne.

IMG_5718

Om svensk skog, i svensk skog.


3 kommentarer

Snø, is og alt for mye grus

De siste dagene har jeg gått og irritert meg over grus.

Når det er åtte minus og snø, så er det jo ikke glatt. Det burde være supre forhold for å dra unger på akebrett, eller å gå på ski til barnehagen. Eller hva med spark, den brukte jeg jo ofte til skolen da jeg var liten?

Men nei, da. Perfekte akebrettforhold er visst også perfekte forhold for traktor med gruseutstyr. Plutselig ser alle fortau og gangveier sånn ut, og ski og akebrett må pent ta til takke med brøytekantene:

- Fortere, mamma! - Nei det går ikke. Alt for mye grus.

– Fortere, mamma!
– Nei det går ikke. Alt for mye grus.

Jeg prøver å se stort på det og tenke at dette sikkert er fint for dem som er gamle og dårlige til beins, for når mildværet en gang kommer så ligger grusen klar og ingen vil gli.

I dag var det mildt – og glatt. Hva skjedde med grusen?

Hvor er egentlig grusen?

Hvor er egentlig grusen?

Jeg ser masse grus, men den har ingen effekt. Grusen har flyttet seg ned i isen. Fordi de små steinene er mørke, blir de ekstra varme når sola skinner på dem. De blir så varme at de smelter hvert sitt lille hull i isen og forsvinner nedover. Til slutt stikker ingenting opp over isflaten, så bena mine sklir like godt som uten grus.

På ettermiddagen ligger hvert lille gruskorn og bader i et selvlaget badekar i isen. Når natten kommer fryser vannet igjen, så alt som gjenstår er en sammenhengende isflate med dekorative gruskorn inni. De kommer fram igjen når det begynner å bli bart, så vi kan kose oss med å koste sammen hauger så barna får brukt syklene sine uten å skli på grusen (for da må vi bruke den fine vårdagen inne på legevakten for at de kan fjerne grus fra skrubbsår med tannbørste).

Jeg vil faktisk gå så langt som å påstå (ja nå er jeg helt vill) at fortauet blir GLATTERE når det er strødd på forhånd enn ikke, fordi den mørke grusen hjelper til med å smelte snøen og gjøre den om til is.

Kanskje vi skal tenke litt på klima, med det samme? De små gruskornene som smelter seg nedover er et godt bilde på hva som skjer når de snødekte arealene på jordkloden blir mindre. Mens snøen reflekterer solstrålene tilbake til verdensrommet, vil mørk jord og stein omdanne sollyset til langbølget varmestråling som fanges inne i atmosfæredrivhuset vårt. Global oppvarming fører til snøsmelting, som fører til mer oppvarming, som fører til mer snøsmelting, og så videre.

I 2005 var jeg med på en feltekspedisjon til Svalbard. Der var det blant annet en mikrobiolog som tok prøver av smeltevannet i små groper på isbreen, dannet av småstein og grus. Hun mente at dette var en veldig spesiell biotop og den blir vel vanligere nå som det er mye smelting på gang. Under er et bilde jeg tok av en av disse gropene. De var veldig fine, og på isbreen kan det godt være grus for min del.

Grus-detalj fra isbre på Svalbard.

Grus-detalj fra isbre på Svalbard.


1 kommentar

Idélab, dag to

Lunsj: Jeg er støl i hjernen. Hver gang vi får en oppgave får jeg panikk og tenker at jeg har INGENTING å komme med. Så tar noen ordet, og så kommer vi videre. Jeg snakker med andre og finner ut at jeg ikke er den eneste som føler meg som verdens minst kreative person.

Før middag: Latteren sitter i veggene. Rommet vibrerer av engasjement. Fremtiden er rett rundt hjørnet.

Under middagen får jeg vite svaret på noe jeg har lurt på lenge. Det er verdt hele oppholdet for min del.

Om kvelden maler vi bilder.
IMG_2981

IMG_2985IMG_2988

Forskningsrådet skriver sin egen blogg fra idélabben. Den ligger her.