Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


1 kommentar

Nytt leketøy på plass!

Nå er labben enda kulere, for vi har fått en splitter ny AFM. Forkortelsen står for Atomic Force Microscope, noe som muligens kunne oversettes som atomkraftmikroskop, men det har ingenting med atomkraft (kjernekraft) å gjøre. Det AFM-en gjør er å måle kraften mellom en spiss nål og en overflate. Og om nålen er spiss nok, og det ikke er vibrasjoner i rommet og man stiller inn alle parametere riktig og så videre og så videre, så kan man gjøre dette så nøyaktig at man kan få et bilde av enkeltatomer på overflaten. Derav atomkraft – krefter mellom atomer.

I første omgang skal vi bruke det til to ting:

  1. «Ta bilder» av mineraloverflater. Vi kan gjøre eksperimenter inne i AFM-en, der vi har mineraler (enkeltkrystaller, altså) i en væske og ser på hvordan overflaten forandrer seg på nanoskala når den vokser eller løses opp. Eller vi kan ta bilder av overflater før og etter at vi har gjort ting med dem i andre eksperimenter.
  2. Måle krefter mellom overflater. Da bruker vi ikke en tynn nål, men limer fast en partikkel på «pinnen» nålen vanligvis er festet til. Det er dette jeg har gjort i eksperimenter som jeg har skrevet om på bloggen tidligere (her, for eksempel).

De siste eksperimentene gjør vi for å finne ut mer om hva som skjer når møtet mellom vann og stein gjør at steinen forandrer egenskaper. Nå er det ikke bare jeg som gjør eksperimentene: En PhD student, som allerede har gjort noen av dem i København, skal begynne på vår maskin neste uke. Og på slutten av året kommer en postdoc som skal gjøre lignende ting.

Vi fikk penger til å kjøpe denne utrolig kule maskinen som del av et ERC-prosjekt som Bjørn Jamtveit, professor ved PGP, fikk nylig. Det lønner seg altså å blande seg inn i store prosjekter. Før jul var jeg og Francois Renard, fransk professor tilknyttet PGP, på en tre dagers reise i Tyskland der vi besøkte forskjellige AFM-produsenter og fikk demonstrert utstyret deres og de alle gjorde sitt beste for å overtale oss til å kjøpe deres maskin. Etterpå  måtte vi skrive en utlysning til et offentlig anbud og vurdere tilbudene vi fikk. Ganske stressende og kompliserte greier, men heldigvis får vi glimrende hjelp fra fakultetet til slike prosesser (jeg gjorde jo det samme for SFA-en, så jeg begynner å bli dreven).

Forrige uke var temmelig intensiv og tettpakket med installering, demonstrering og opplæring på alt utstyret. Men nå er det på plass og jeg gleder meg som bare det til å komme i gang med å titte på ting på nanoskala. Med de to instrumentene vi har på labben nå (atomkraftmikroskopet og overflatekraftmikroskopet) kan vi få et ganske utfyllende bilde av hvordan forskjellige overflater påvirker hverandre når de er i kontakt. Jeg skal passe på å få lagt ut noen fancy AFM-bilder på bloggen etterhvert.

Advertisements


1 kommentar

Ting på plass!

Det viser seg at desto viktigere ting er, desto vanskeligere blir det å blogge om det. Dette har ført til uvant lite blogging i det siste. Nå er det på tide å gjøre noe med det, så her kommer en oppdatering fra labben.

I slutten av mars ble apparatet mitt levert. Labben var klar... klar nok. Ting fungerte. Det ble noen hektiske dager med foredrag, møter, middager og fikling med ting som skulle justeres og limes og tilpasses i siste liten.

Siden det var så viktig å få alt på plass før leveransen, ble det til at jeg ryddet alt annet til side en stund. Etterpå dukket alle de andre tingene opp. Derfor ble det en hektisk måned som endte i en hesblesende uke, fulgt av noen flere hektiske uker der jeg måtte gjøre alt det andre som jeg egentlig skulle ha gjort.

Det ser lovende ut!

Professor Jacob Israelachvili, SFA-ens «far», tester utstyret. Det ser lovende ut!

Apparatet «mitt» er altså et Surface Forces Apparatus, som brukes til å måle krefter mellom overflater når de er mindre enn noen hundretalls nanometer fra hverandre. Det er disse kreftene som sørger for at ting henger sammen – eller ikke henger sammen. Jeg har tenkt å bruke det til å finne ut av hva som bestemmer hvorvidt mineraler klistrer seg til hverandre, sånn at vi får solide materialer, eller dytter hverandre vekk og får ting til å sprekke opp.

I apparatet monterer vi opp to flater av ønsket materiale, 2-3 mikrometer tykt, med sølv på baksiden. Disse er limt på hver sin buede glassbit. Når overflatene er nær hverandre og vi sender hvitt lys gjennom den, oppstår det et morsomt fenomen. Det av lyset som kommer seg gjennom den første sølvflaten uten å bli reflektert tilbake til lampen, vil bli reflektert frem og tilbake mellom de to speilene. Dersom bølgelengden til dette lyset er slik at et helt antall av halve bølger får plass mellom speilene, vil lyset forsterkes ved hver refleksjon. Til slutt er det bare disse bestemte bølgelengdene som slipper gjennom, og alt annet blir sendt tilbake. Lyset som har sluppet gjennom begge overflatene sender vi inn i et spektrometer, der lys med forskjellig bølgelengde blir sendt i forskjellige retninger. Så sendes lyset til et kamera, og om vi har gjort ting riktig får vi et bilde som ser slik ut:

IMG_3901

Hipp hurra! Så er det bare å sende bildet til Matlab og beregne avstander og slikt. Jeg greier ikke forklare dette mer skikkelig i løpet av et trøtt blogginnlegg, men om dere følger bloggen videre vil det nok dukke opp flere liknende bilder i fremtiden. Når man bare har sett og hørt noe mange nok ganger, kan man begynne å synes at man forstår det. Så hold ut.

Alt har selvfølgelig ikke gått helt på skinner etter leveransen, men det kommer seg.

For eksempel: Jeg hadde tre motorer og tre kontrollkort. Hvor skal jeg sette ledningene? Jeg gav elektronikklabben kortene og det jeg kunne finne av manualer og bad dem om å putte det i en boks som jeg kunne sette ledning i og slå på, og så skulle det fungere.

Det var ikke riktig så lett. I det hele tatt. Men nå funker det, og det er bare å sette seg ned å skrive programmet for å styre motoren. Det er nok heller ikke så lett, men det kommer til å gå det også .

Den FUNKER!!

Den FUNKER!!

Det som er litt skummelt med sånne store tekniske prosjekter er at jeg synes jeg kan bli så overveldet av de praktiske tingene som skal gjøres at jeg mister målet litt av syne. Nå er vi snart der at vi kan begynne å gjøre eksperimenter. Får vi gjort noe vettugt? Legg merke til at jeg sier vi, for nå er det ikke bare jeg som skal jobbe med dette prosjektet, det er også to doktorgradsstudenter. Det er ille nok om jeg roter meg bort og ikke får til noe, men det er helt uaktuelt at jeg skal rote bort årevis av andre personers liv til å gjøre ting som ikke funker. Så det er bare nødt til å bli bra.


2 kommentarer

Sen kveld på labben

Jeg er på fisketur igjen. Denne gangen på Tannlegehøgskolen. Det er fint å reise til København, men utrolig upraktisk for mannen som må gjøre alt hjemme mens jeg er ute og koser meg. Det viser seg at det står en helt lik maskin her i Oslo, som gjør at eksperimenter kan kombineres med barnehagelevering. Veldig bra. Dessverre for meg så internfaktureres det per dag til mitt noget slunkne forskningsbudsjett, så det gjelder å få dagen til å vare lengst mulig.

Så nå sitter jeg her i et kveldsstille laboratorium og venter på at eksperimentet mitt skal bli klart til flere målinger. Det står en skål med tenner borte på benken. Akkurat det er jeg ikke vant til.

Om det skulle oppstå problemer, så er jeg bevæpnet med disse helt utrolig lange sprøytespissene:

Photo on 11-27-13 at 7.24 PMJeg bruker dem til å sprøyte vann inn dit målingene foregår i AFM-en i bakgrunnen. Men jeg fant dem her. Hva er det egentlig man skal bruke disse til? Ligger det sånne i en skuff hos tannlegen min?

Det som er litt kjedelig på denne labben er det totale fraværet av StarWars eller andre morsomme navn på instrumentene. I mangel på noe bedre kaller jeg fyren her i bakgrunnen for Frank. Bare vent, Frank, her kommer jeg med sprøyta.


3 kommentarer

Du og jeg, Skywalker.

20131024-215341.jpgEtter ti år som eksperimentalist har jeg fått et ganske avslappet forhold til nederlag.

Før jeg begynner på forsøkene kjenner jeg til hel drøss med ting som sannsynligvis vil skjære seg, og jeg er smertelig klar over at de ukjente risikofaktorene er omtrent ti ganger så mange. Av alle ting jeg har forsøkt i labben har jeg kanskje lyktes med…

2 prosent?

Faktisk.

Luke har laser. Mitt hemmelige våpen er UV-pistolen.

Luke (den fine boksen oppå den større boksen i bakgrunnen) har laser. Mitt hemmelige våpen er UV-pistolen.

Grunnen til at jeg (og alle andre eksperimentalister der ute) gidder å fortsette er DEN FØLELSEN man får når ting, mot alle odds, FUNGERER. Når man plutselig ser noe, som er virkelig, og som ingen har sett før.

Du og jeg, Skywalker. Vi har vært tålmodige denne uka. Bevepnet med laser og pistol har vi nedkjempet utallige hindringer. Og til slutt fant vi det,

SVARET

som vi lette etter.

Takk for samarbeidet, for denne gang.

Her er SVARET.

Her er SVARET.

(Du lurer kanskje på hva svaret, eller for den saks skyld spørsmålet, er? Det har jeg ikke tenkt å fortelle akkurat nå.)


1 kommentar

På fisketur i København

Jeg har en plan. Jeg vil dytte krystaller mot hverandre og måle kraften mellom dem når de bare er noen nanometer unna hverandre. Da jeg var på konferanse i Firenze traff jeg noen hyggelige mennesker fra universitetet i København som syntes dette hørtes ut som en god idé. Derfor har jeg vært i Danmark i dag og fisket krystaller.

Instrumentet vi brukte i dag heter Luke Skywalker, og han er en AFM. AFM står for Atomic Force Microscope. Luke er den nyeste og kuleste AFM-en i gruppa. De som vil skru opp temperaturen på målingene sine må bruke Obi Wan Kenobi, som står i samme rom. Darth Wader og Yoda fikk jeg ikke hilst på i dag.

Atomic Force Microscope blir «atomkraftmikroskop» om det skal oversettes direkte til norsk, men det blir ikke helt riktig. Dette har ingenting med det vi vanligvis mener med atomkraft å gjøre. I AFM-en sitter en ørliten pinne, kanskje en tidels millimeter lang og to hundredels millimeter bred, som det er festet en enda mindre nål i enden på. En laserstråle skinner på toppen av pinnen og blir reflert opp til en detektor. Dersom pinnen bøyes, flytter refleksjonen av laserlyset på detektoren på seg.

Man plasserer denne pinnen rett over overflaten man er interessert i, og bruker en ekstremt nøyaktig motor til å senke pinnen langsomt mot underlaget. Når nålen kommer nær overflaten under, begynner det å virke krefter mellom atomene i nåla og atomene i underlaget. Dette gjør at pinnen blir dyttet opp, eller dratt ned, og dette kan man lese av ved å se på utslaget fra detektoren. Siden man selvfølgelig husker å måle hvor stiv pinnen er, kan man bruke dette til å regne ut kraften mellom nåla og underlaget.

Det er vanlig å bruke AFM til å lage et slags kart over høydeforskjeller på en overflate. Er man nøyaktig nok, kan man faktisk se hvordan enkeltatomene sitter. Det er veldig vanskelig å forstå at det faktisk går an, men det gjør det. Man kan lage helt fantastiske bilder av utrolig små ting.

Men det jeg ville gjøre, denne gangen, var ikke å lage fantastiske bilder. Jeg ville sette fast en liten krystall i AFM-pinnen og måle hvilke krefter jeg får når jeg senker denne krystallen mot underlaget. I dag har vi funnet ut hvordan vi skal sette fast krystallen, så vi er klare til å gjøre ordentlige målinger når jeg kommer tilbake til København litt senere.

Metoden vi bruker kalles for fisking. Man gjør som følger: Ta en krystall, og dryss støv av den samme krystallen oppå. Blås bort mesteparten av støvet. Gjør klar epoxy-lim ved å blande de to komponentene fra tuben. Legg en forsvinnende liten mengde lim på kanten av den store krystallen, og legg den inn i AFM-en.

Så ser vi i mikroskopet. AFM-pinnen stikkes forsiktig inn i limklumpen, som nå ser helt enorm ut. Når pinnen trekkes ut igjen sitter en liten mengde lim igjen på tuppen.

Pinnen beveges så over overflaten til vi finner en støvpartikkel (som vi ser i mikroskopet som små kantete krystaller, noen tusendels millimeter store), senkes langsomt ned over den, og så håper vi at den limer seg fast. Krystallen er fisket.

Jeg er veldig gira over at dette fungerte, og gleder meg masse til å bruke en hel uke på å dytte krystaller senere. Å kunne dra på dagsbesøk til København for å leke med Luke Skywalker er skikkelig luksus.

20130918-195445.jpg

På bildet: pinne til venstre, lim til høyre, og mer eller mindre fine småkrystaller spredt rundt omkring.

Dette er forresten det første blogginnlegget jeg har lagt ut i lufta (på flyet).


Legg igjen en kommentar

Når jeg består av nesten bare tomrom, hva er det jeg kjenner når jeg dytter på noe med fingeren min?

Jeg kan huske at etter å ha lært om atomkjerner og elektroner så lurte jeg veldig på dette. Elektronene er jo bare som noen forsvinnende små prikker som svirrer rundt en atomkjerne langt, langt borte. Om vi kunne krympe til elementærpartikkel-størrelse og reist inn i et fast stoff ville vi nesten ikke ha sett noen ting. Allikevel er altså ting veldig så harde og følbare.

Og så er det ganske kult da, at 20? 25? år senere, har jeg vært og jobbet hos en professor (jeg skal fortelle mer om selve forskningsoppholdet senere) som har viet livet sitt til akkurat dette: å måle krefter mellom overflater. Han har også skrevet en av de beste bøkene om temaet.

Selvfølgelig er det elektronene og atomkjernene som gjør at ting er harde – hva skulle det ellers ha vært? Som vi har lært på skolen så er elektronene negativt ladet og kjernen er positiv. Kjernen sitter i midten som en litt kjedelig klump, mens elektronene har ganske mye frihet til å svirre omkring. Noen ganger, for eksempel i vannmolekylet, har elektronene en tendens til å klumpe seg sammen litt på siden av molekylet sånn at det er mer negativt på den ene siden og mer positivt på den andre siden. Andre ganger er et molekyl så glad i elektroner at det stjeler ett eller flere fra et annet, sånn at man ender opp med noen positivt ladde og noen negativt ladde molekyler.

Når man så prøver å dytte to flater sammen, så begynner ladningene på overflatene, og i det som måtte befinne seg imellom (vann, eller kanskje svette på fingeren) å påvirke hverandre. Veldig nær en overflate pleier molekyler å være litt mer organiserte enn det de vanligvis er når de er en del av en væske eller en gass. Når de er i nærheten av to overflater, istedenfor bare en, blir de nødt til å reorganisere seg. Denne reorganiseringen blir til en kraft mellom overflatene – de dytter eller drar på hverandre – som vi kan måle, eller kjenne. Om man dytter veldig hardt, kan molekylene komme så nær hverandre at kraften mellom de negative elektronene i nabomolekyler blir stor. Litt som når man prøver å sette sammen to briotogvogner og har snudd den ene feil vei: de dytter på hverandre før de faktisk er i kontakt.

Og sånn er det altså at flater kjennes harde ut.