Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


1 kommentar

Nytt leketøy på plass!

Nå er labben enda kulere, for vi har fått en splitter ny AFM. Forkortelsen står for Atomic Force Microscope, noe som muligens kunne oversettes som atomkraftmikroskop, men det har ingenting med atomkraft (kjernekraft) å gjøre. Det AFM-en gjør er å måle kraften mellom en spiss nål og en overflate. Og om nålen er spiss nok, og det ikke er vibrasjoner i rommet og man stiller inn alle parametere riktig og så videre og så videre, så kan man gjøre dette så nøyaktig at man kan få et bilde av enkeltatomer på overflaten. Derav atomkraft – krefter mellom atomer.

I første omgang skal vi bruke det til to ting:

  1. «Ta bilder» av mineraloverflater. Vi kan gjøre eksperimenter inne i AFM-en, der vi har mineraler (enkeltkrystaller, altså) i en væske og ser på hvordan overflaten forandrer seg på nanoskala når den vokser eller løses opp. Eller vi kan ta bilder av overflater før og etter at vi har gjort ting med dem i andre eksperimenter.
  2. Måle krefter mellom overflater. Da bruker vi ikke en tynn nål, men limer fast en partikkel på «pinnen» nålen vanligvis er festet til. Det er dette jeg har gjort i eksperimenter som jeg har skrevet om på bloggen tidligere (her, for eksempel).

De siste eksperimentene gjør vi for å finne ut mer om hva som skjer når møtet mellom vann og stein gjør at steinen forandrer egenskaper. Nå er det ikke bare jeg som gjør eksperimentene: En PhD student, som allerede har gjort noen av dem i København, skal begynne på vår maskin neste uke. Og på slutten av året kommer en postdoc som skal gjøre lignende ting.

Vi fikk penger til å kjøpe denne utrolig kule maskinen som del av et ERC-prosjekt som Bjørn Jamtveit, professor ved PGP, fikk nylig. Det lønner seg altså å blande seg inn i store prosjekter. Før jul var jeg og Francois Renard, fransk professor tilknyttet PGP, på en tre dagers reise i Tyskland der vi besøkte forskjellige AFM-produsenter og fikk demonstrert utstyret deres og de alle gjorde sitt beste for å overtale oss til å kjøpe deres maskin. Etterpå  måtte vi skrive en utlysning til et offentlig anbud og vurdere tilbudene vi fikk. Ganske stressende og kompliserte greier, men heldigvis får vi glimrende hjelp fra fakultetet til slike prosesser (jeg gjorde jo det samme for SFA-en, så jeg begynner å bli dreven).

Forrige uke var temmelig intensiv og tettpakket med installering, demonstrering og opplæring på alt utstyret. Men nå er det på plass og jeg gleder meg som bare det til å komme i gang med å titte på ting på nanoskala. Med de to instrumentene vi har på labben nå (atomkraftmikroskopet og overflatekraftmikroskopet) kan vi få et ganske utfyllende bilde av hvordan forskjellige overflater påvirker hverandre når de er i kontakt. Jeg skal passe på å få lagt ut noen fancy AFM-bilder på bloggen etterhvert.


Legg igjen en kommentar

Etter regnet

Etter regnet glitrer det i tusenvis av vanndråper. De ligger som perler på de superhydrofobe bladene. Kløver, marikåpe og gress er blant de beste. Disse bladene er dekket av ørsmå hår, dekket av et stoff som vannet ikke kan fordra. Derfor blir vanndråpene liggende og balansere som klinkekuler oppe på toppen av hårståene.  

Neste vindpust vil få dem til å trille av. Støv og rusk på bladene vil klistre seg fast i dråpene og bli med på veien. Vips, så er bladene tørre og rene igjen. 

20140525-182658.jpg


Legg igjen en kommentar

Senitbuen

Min tante observerte noe rart på himmelen her om dagen. En slags omvendt regnbue. Hva er dette?

Senitbue i Vesterålen, mai 2014. Foto: Ingrid Larssen

Senitbue i Vesterålen, mai 2014. Foto: Ingrid Larssen

Det vet jeg, svarte jeg eplekjekt, det er en del av en halo, og forklaringen ligger her. Jeg regnet med at sola stod bak taket. Hadde jeg vært litt mer observant, ville jeg ha oppdaget at denne buen er rød ytterst, mens haloen er rød innerst. Altså er ikke dette en del av en halo. Min tante kunne også fortelle at sola stod lavt på himmelen, og slett ikke bak taket. Litt mer observante og mindre eplekjekke observatører kunne raskt fortelle at dette er en senitbue.

Om du ligger på ryggen og ser rett opp på himmelen, så ser du på senit. Hadde senitbuen vært en hel sirkel, ville senit vært i sentrum. Derav senitbue.

Senitbuen dannes, som haloen, ved at lyset brytes når det passerer gjennom iskrystaller. De små iskrystallene i cirrus-skyene er formed som sekskantede plater. I haloen går lyset inn gjennom en og ut gjennom en annen av sidekantene på iskrystallen. I senitbuen, derimot, går lyset inn gjennom den flate oversiden av iskrystallen og ut gjennom en av sidekantene. Disse flatene står 90 grader på hverandre, så det blir akkurat som å sende lyset gjennom et prisme, som noen sikkert husker fra fysikktimene på skolen. Når lyset bøyes på vei inn i og ut av iskrystallen, ender de ulike fargene opp med å gå i litt forskjellige retninger, slik at vi ser dem hver for seg.

Sola står lavt. La oss si den står 20 grader over horisonten. Jeg kan se i retning 20 grader oppover, og så treffer lyset fra sola øynene mine direkte (men det anbefales IKKE!). Jeg kan se hvor som helst på himmelen, og siden det er en sånn fin dag, treffer blått lys fra sola øynene mine fra omtrent alle retninger – det har sprettet omkring mellom luftmolekylene, og noe av det ender omsider hos meg.

Eller jeg kan snu ansiktet mot sola og vende blikket 70 grader oppover. Da ser jeg lyset som har blitt bøyd nedover gjennom de flate iskrystallene. Blått lys bøyes mest, så det ser jeg lengst vekk fra sola. Og avhengig av hvilken retning sidekanten av iskrystallen hadde, blir lyset også vendt litt til siden, og resultatet blir en bue, mellom sola og senit, med senit som sentrum. En omvendt regnbue, et smil på himmelen.

Håper jeg får se det selv en gang.


4 kommentarer

Curlingfysikk

Her er det norske curlinglaget i aksjon under OL i Vancouver. Foto: Bjarte Hetland/Wikimedia Commons

Her er det norske curlinglaget i aksjon under OL i Vancouver. Foto: Bjarte Hetland/Wikimedia Commons

Curling. For en sport! Om jeg var fysikklærer skulle jeg ha tatt med meg elevene mine på curlingbanen for å oppleve Newtons lover på nært hold. Men det som virkelig gjør curlingen fascinerende, friksjonen, er så lite forstått at man må studere fysikk i flere år for å få noe særlig tak på det. Her kommer et lite innblikk i lovene som styrer curlingsteinens ferd over isen.

Minst mulig kontakt

Curlingsteinene – som er av granitt og mellom 17 og 20 kg tunge – er ikke flate under. De er uthulte, omtrent som en flaskebunn, slik at det bare er et ringformet område som er i kontakt med isen.

Heller ikke isen er flat. Curlingbanene sprayes av en dusj med vanndråper så de blir fulle av bittesmå ishumper.

Til sammen gjør dette at 20 kg granitt hviler på bare noen få topper av is. Intuitivt er det lett å se for seg at en helt plan overflate er glattere enn en ru flate, men når to veldig harde stoffer – som is og stein – skal gli mot hverandre, lønner det seg at den ene flaten er ru for å skape minst mulig kontakt.

Det smelter på toppene

Alle som har fulgt denne bloggen en stund bør vite at is stort sett er dekket av en tynn film med vann. Det er denne filmen som bestemmer hvordan steinen beveger seg. Desto tykkere film, desto mindre friksjon. Tykkelsen på filmen kontrolleres av to faktorer: Trykk og temperatur.

Smelting #1: Temperatur

Etter at steinen er satt i bevegelse, løper to mann foran og koster. Heftig kosting får steinen til å bremse mindre. Det er fordi kostingen øker temperaturen i isen, omtrent som når du gnir hendene fort mot hverandre. Høyere temperatur gir tykkere vannfim gir mindre friksjon gir mindre bremsing av steinen, og den går lengre. Om det kostes mer på den ene siden av steinen vil det få den til å svinge mot den andre siden, der friksjonen er større.

Smelting #2: Trykk

I curling kan man også få steinen til å svinge ved å få den til å rotere mens man skyver den fremover. Om steinen roterer med klokka, beveger fronten av steinen seg mot høyre, og friksjonen virker i motsatt retning, mot venstre. I bakkant virker friksjonen på mot høyre. Siden steinen ble satt i gang med et dytt på oversiden, der håndtaket sitter, bikker den hele tiden ørlite grann fremover. Det gjør at trykket fra steinen mot istoppene er større på fremsiden enn på baksiden. Høyt trykk gjør vannfilmen tykkere, og det gir mindre friksjon på forsiden av steinen enn på baksiden. Derfor er friksjonen som virker mot venstre mindre enn den som virker mot høyre. Summen blir en liten kraft mot høyre, som får steinen til å svinge.

Dette er avansert fysikk

I de fleste kurs i fysikk, både på videregående og på universitetet, er friksjon enten noe vi bestemmer oss for å se bort i fra, eller vi får oppgitt en enkel formel der friksjonenskraften er like stor som en bestemt andel av kraften fra tingen som beveger seg mot underlaget. I motsetning til Newtons lover har vi ingen universell naturlov som kan beskrive friksjon. Friksjon avhenger av mange forskjellige fenomener på mange forskjellige skalaer, og det foregår mye spennende forskning på dette rundt om i verden, også hos oss i Oslo. Senest i fjor ble det publisert flere artikler om nettopp curlingfysikk. Her er det mye å ta tak i.


6 kommentarer

OL spesial: Skøyteis

Jeg har brukt en del tid på å se på skøyteløp i dag, og siden det ikke var uhyre spennende hele tiden ble jeg sittende og tenke på selve skøytebanen. Hva er det egentlig som skal til for å lage skøyteis i OL-klasse?

Den glatte isen

Is er et fast stoff, men det er mye glattere enn de andre faste stoffene vi omgir oss med. Imidlertid er faste overflater gjerne glatte når de er våte, og det er også flytende vann som er årsaken til at skøytene glir så lett over isen.

Siden det kan virke rart at isens overflate ikke er frossen selv om temperaturen er godt under null grader, har det vært foreslått at trykket fra skøyten på isen senker frysepunktet, eller at friksjonen mellom skøyten og isen genererer nok varme til å smelte det øverste laget med is. Om friksjonen hadde vært årsaken, hadde det vært vanskelig å få skøytene til å begynne å gli. Vi vet jo alle at is er glatt selv når man står helt stille. Trykket fra skøytene er i høyden nok til å senke frysepunktet med omtrent en grad, og skøyter glir fortsatt på isen når temperaturen er godt under tjue minusgrader.

Det viser seg at is nesten alltid har et lag av flytende vann på overflaten. Isoverflaten blir ikke skikkelig tørr før temperaturen nærmer seg tretti minus. Dette gir opphav til andre morsomme effekter som telehiv og sammensveising av snøkrystaller. Vannfilmen på isen blir tynnere desto kaldere det blir. Betyr det at isen er glattest når den er like ved å smelte? Hva er egentlig den optimale skøyteistemperaturen?

Fart versus kontroll 

Under OL foregår en rekke idretter på is: Lengdeløp, kortbaneløp og kunstløp, ishockey, curling, bob, aking og skeleton. Alle har sine spesielle egenskaper, og jeg skal holde meg til dem som foregår med skøyter.

I is-spesifikasjonene fra OL i Vancouver, 2010, oppgis optimal istemperatur for lengdeløp til å være mellom -9 og -5, for kortbaneløp -5.5, for kunstløp -3.3 grader og for hockey rundt -6 grader. Desto høyere temperatur, desto tykkere skal også isen være (fra 5 cm ned til 2.5 cm). Isen kjøles ved hjelp av en kjølevæske som sirkulerer i betongsålen under banen, og jeg er usikker på om det er sånn at tykkere is nødvendigvis er mindre kald fordi den kommer høyere opp fra det kaldere underlaget, eller om temperaturen på kjølevæska endres og det er andre grunner til å ha tykkere is.

Kald is er hard og gir fart, men om den er alt for kald blir laget av overflatesmelte så tynt at det ikke gir god smøreeffekt. Varm is er mykere og gir kontroll. Når isen er nærmere smeltepunktet er det enklere for kunstløperne å få tak med skøytene i isen før de skal gjøre hopp, eller eller gjøre krappe vendinger. Siden lengdeløperne ikke svinger så mye, får de den kaldeste isen som er best for fart.

Myk is og hard is 

Men hvorfor er det egentlig sånn at varm is er mykere? Isbiter som er i ferd med å smelte er da slett ikke myke. De er harde helt til de forsvinner. Hadde skøytebanen vært en stor, flat isbit, ville bare laget med overflatesmelte bli tykkere og tykkere oppå den harde isen.

Jeg tror svaret må ligge i at skøytebanen ikke er en stor isbit, men at den består av mange små iskrystaller. Når is ligger mot is har den det ganske fint, og det behøver ikke være flytende vann mellom alle iskrystallene. Men i kantene og hjørnene av krystallene har vannmolekylene det fortsatt litt ugreit, og der vil de smelte. Derfor har slike store blokker med is et nettverk av små vannårer i seg. Når temperaturen stiger, blir det mer og mer av dette vannet, helt til iskrystallene begynner å løsne fra hverandre rundt null grader. Dette opplever vi som sørpe om våren.

Størrelsen på iskrystallene avhenger for en stor del av hvor fort isen fryser. Ved å variere hvor mye vann man heller på banen, hvor kaldt underlaget er under innfrysningen, og hvor kald isen er når den brukes, kan man derfor variere isens egenskaper ganske mye.

Vedlikehold av isen

Jeg har ofte lurt på hva som egentlig skjer når skøyteløperne tar pause og isen vannes. For lengdeløp dusjes isen med vann som er 65 grader varmt. I tillegg har vannemaskinen en skarp, over to meter lang skrape som den bruker til å få isen helt plan. Siden isen hele tiden kjøles fra undersiden, gjør dette at isoverflaten blir flat og fin.

Om luftfuktigheten over isen blir for høy, kan det dannes rim. Da vokser små busker av is opp fra isoverflaten. Disse gjør isen ru og øker friksjonen. Derfor må OL-arenaene ha et godt anlegg for å holde luftfuktigheten lav.

Sånn, da vet vi det. Derimot er curlingis ikke som skøyteis, av interessante årsaker, og jeg blir kanskje nødt til å skrive noe om det senere.
Bilde: "Skate like the wind" av Joshua Mayer/Flickr

Bilde: «Skate like the wind» av Joshua Mayer/Flickr (CC lisens)


Legg igjen en kommentar

Skytterfisk og mannlig urinering

En veldig tynn stråle av vann har en tendens til å brytes opp til en rekke av dråper. Dette fenomenet, som skyldes at vannstrålen vil minimere overflatearealet sitt, kan du se om du prøver å få vannstrålen i springen til å bli så liten som mulig. Nå vil jeg fortelle om hvordandette fenomenet, med det gode navnet Plateau-Rayleigh ustabiliteten, spiller hovedrollen i to av årets mer fascinerende fysikkstudier.

Spyttefisken

Skytterfisken. Bilde: Wikimedia Commons

Skytterfisken. Bilde: Wikimedia Commons

Skytterfisken lever i brakkvannsområder i tropene, der den bruker en ganske spesiell taktikk for å fange mat.

Den svømmer omkring like under vannflaten mens den ser etter insekter som sitter på gress og kvister over vannet. Når den ser et passende bytte, stikker den hodet opp og skyter ut en vannstråle. Vannet treffer insektet, som faller ned og inn i gapet til fisken, som i mellomtiden har plassert seg på riktig sted.

Forskere har undret seg over hvordan den lille fisken har kunnet spytte hardt nok til å få insektene til å falle ned, og nå har de brukt høyhastighetskamera til å finne svaret.

På vei fra fisken til insektet brytes vannstrålen opp i dråper, på grunn av den nevnte ustabiliteten. Da fisken spyttet, økte den trykket på spyttinga mot slutten. Dette gjør at det bakerste vannet går fortere enn det forrerste. Det som nærmer seg insektet er en rekke med dråper, der de bakerste hele tiden tar igjen dråpene foran og gir dem et ekstra dytt. Vannet blir mer og mer samlet og går fortere og fortere, helt til en kanonkule av vann treffer insektet med kjempekraft og sender det i munnen til den ventende jegeren.

Ikke bare ett, men to hydrodynamiske triks. For en fisk!

Urinalsøl

Når vi først er i gang med Plateau-Rayleigh ustabiliteten, er vi nødt til å ta med et annet studie som har vakt oppsikt i år. Denne gangen er det urinaldynamikk som har blitt studert med høyhastighetskamera.

En urinstråle vil, akkurat som hos spyttefisken, brytes opp i dråper etter en viss avstand. Du har kanskje lagt merke til at herretoaletter lukter verre enn dem som damene bruker? Studien viser at når strålen treffer en overflate etter at ustabiliteten har inntruffet, er det så godt som umulig å unngå søl. Moralen: Sitt og tiss? Stå veldig nær urinalet? Eller vask ofte på guttedoen. Her har forskerne samlet noen andre, vitenskapelig begrunnede råd.


2 kommentarer

Sen kveld på labben

Jeg er på fisketur igjen. Denne gangen på Tannlegehøgskolen. Det er fint å reise til København, men utrolig upraktisk for mannen som må gjøre alt hjemme mens jeg er ute og koser meg. Det viser seg at det står en helt lik maskin her i Oslo, som gjør at eksperimenter kan kombineres med barnehagelevering. Veldig bra. Dessverre for meg så internfaktureres det per dag til mitt noget slunkne forskningsbudsjett, så det gjelder å få dagen til å vare lengst mulig.

Så nå sitter jeg her i et kveldsstille laboratorium og venter på at eksperimentet mitt skal bli klart til flere målinger. Det står en skål med tenner borte på benken. Akkurat det er jeg ikke vant til.

Om det skulle oppstå problemer, så er jeg bevæpnet med disse helt utrolig lange sprøytespissene:

Photo on 11-27-13 at 7.24 PMJeg bruker dem til å sprøyte vann inn dit målingene foregår i AFM-en i bakgrunnen. Men jeg fant dem her. Hva er det egentlig man skal bruke disse til? Ligger det sånne i en skuff hos tannlegen min?

Det som er litt kjedelig på denne labben er det totale fraværet av StarWars eller andre morsomme navn på instrumentene. I mangel på noe bedre kaller jeg fyren her i bakgrunnen for Frank. Bare vent, Frank, her kommer jeg med sprøyta.