Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


6 kommentarer

Overflater som elsker vann. Å drives oppover av kjærlighet

Etter gårsdagens innlegg om trær fikk jeg dette spørsmålet:

«Hvordan får Redwoodtreet sugd vannet helt opp på toppen da? Har de det bare helt grusomt de molekylene på toppen? »

Jeg skulle vel ha sett det komme. Jeg tok det ikke med i gårsdagens historie fordi jeg ikke greide å finne en god måte å forklare det på. Men nå skal jeg gjøre et forsøk.

Det er med stoffer som med mennesker – noen går godt overens, og noen gjør det absolutt ikke.

Vannet er en sånn type som andre har sterke meninger om. Det finnes noen overflater som hater vann, og noen som elsker det.

Glass er en av dem som elsker vann. Har du noen gang tatt en blodprøve der de har brukt et lite glassrør til å suge opp blodet med? Selv om røret peker oppover, så forsvinner blodet (som stort sett består av vann) inn i røret helt av seg selv.

Dette er det som skjer: Den nederste biten av røret kommer i kontakt med bloddråpen, og vannmolekylene kommer i kontakt med glasset.

«Dette var jammen flott», sier glasset der nederst. «Se her, dere. Vi får sitte her inntil vannet istedenfor å bare ha den kjedelige lufta å henge med.»

Vannmolekylene virrer litt rundt, som molekyler gjør. Noen ganger tar et av molekylene som sitter øverst oppe på glasset et ekstra stort skritt oppover. Da holder glasset så godt fast på det at vannet ikke kommer seg ned igjen. Sånn kryper vannet i gjevnt tempo oppover glassflaten.

På utsiden av røret blir det etterhvert veldig tungt å krype oppover, fordi vannet må dra hele den store vannoverflaten etter seg – som å klatre opp en fjellside samtidig som man løfter et enormt teppe opp fra bakken. Derfor kommer ikke vannflaten så veldig langt opp før det blir nødt til å stoppe. Inni det lille røret, derimot, hjelper glasset på alle kantene med på å dra det lille runde overflateteppet oppover. Jo mindre røret er, jo lettere er det å komme høyt opp.

Inne i bladene på et tre er det noen bitte, bitte små rør. Det er her de lange sugerørene i trestammen ender opp. Disse små rørene er så trangeat de bare har plass til noen få vannmolekyler i bredden. Innsiden av røret elsker vann minst like mye som det glass gjør, og siden nesten alle vannmolekylene inne røret får sitte og kose med røroverflaten, er det nesten ingen grenser for hvor høyt de kan greie å klatre. Selv strevet med å trekke 100 meter vann opp bak seg er det verdt.

Dette bildet har jeg stjålet fra hydrologie.org. Et fint eksempel på at vann i trange rør kryper høyest.

Dette bildet har jeg stjålet fra hydrologie.org. Et fint eksempel på at vann i trange rør kryper høyest.

(om dette hørtes i overkant fjasete ut, så kan jeg forsikre om at det er vitenskapelig fundert. Riktig fagterminologi for disse overflatene er hydrofile, vann-elskende, og hydrofobe, vann-hatende.)


5 kommentarer

Dykkersyke i trær

I går nevnte jeg så vidt at vann koker ved lavere temperatur når man er høyt oppe på fjellet.

Vannet koker lettere fordi trykket er lavere der oppe. Man har rett og slett en mindre mengde med luft å bære på når man har beveget seg et stykke opp gjennom atmosfæren. Når trykket er lavt er det lettere for molekylene å frigjøre seg fra hverandre og ta steget over i gassfasen.

Dette har faktisk ganske mye med trær å gjøre!

Et tre består på en måte av mange små sugerør ved siden av hverandre, som alle er fylt med vann. Siden det hele tiden fordamper noe vann fra bladene, strømmer det vann fra røttene og helt opp til de høyeste grenene.

Disse redwoodtrærne kan bli over 100 meter høye, og greier allikevel å dra vann helt opp til de øverste bladene sine.

Disse redwoodtrærne kan bli over 100 meter høye, og greier allikevel å dra vann helt opp til de øverste bladene sine.

Inne i hvert av sugerørene synker trykket jo lengre opp i treet man kommer. Vann er såpass tungt at 10 meter med vann gir det samme trykket som hele atmosfæren. Det er derfor vi ganske fort kan merke at trykket blir stort når vi dykker.

10 meter opp i treet er altså trykket «en atmosfære» mindre enn det var nede ved bakken.

En atmosfære minus en atmosfære blir…

null!

Null trykk? Høres ganske rart ut. Og om du er et redwoodtre har du kanskje fortsatt 90 meter igjen! Da fortsetter vi oppover i treet og får minus en… minus to… …. minus ni atmosfærer!

I en væske kan vi kan se for oss at molekylene holder hender med hverandre, i akkurat den avstanden til hverandre som de liker best. De danser rundt og bytter partner i blant, men liker ikke å være for langt borte fra vennene sine. Når vi senker trykket tar vi tak i molekylene og drar dem fra hverandre. De holder hverandre fortsatt i hendene men de må strekke veldig på armene sine for å klare det, så de har det ganske ubehagelig.

Om de hadde hatt plass skulle de for lenge siden bare ha sluppet hverandre og svirret rundt i gasstilstand. Men inne i sugerøret i treet får de ikke plass! De er klemt inne mellom de stive celleveggene i treet og klarer ikke lage nok plass til en gassboble.

Dette er bra for treet, for om det oppstår en boble midt inne i sugerøret så greier ikke treet lengre å bruke det røret til å suge vann med. Noen ganger skjer det, og da kalles det embolisme – dykkersyke. Det er nemlig noe av det samme som kan skje når trykket i blodet synker veldig fort hos dykkere som er på vei til overflaten.

Embolisme er ikke bra for trær. Derfor er det mange forskere som prøver å forstå mer om hvordan embolisme oppstår. En av metodene de bruker er å sette mikrofoner på trær og høre det lille poppet som kommer hver gang en boble oppstår inne i treet. De kan også lage negativt trykk inne i små trebiter ved å kjøre dem i sentrifuge, og så finne ut hvor dårlig sugererørene dungerer etterpå ved å måle hvor vanskelig det er å dytte vann gjennom trebiten.