Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Senitbuen

Min tante observerte noe rart på himmelen her om dagen. En slags omvendt regnbue. Hva er dette?

Senitbue i Vesterålen, mai 2014. Foto: Ingrid Larssen

Senitbue i Vesterålen, mai 2014. Foto: Ingrid Larssen

Det vet jeg, svarte jeg eplekjekt, det er en del av en halo, og forklaringen ligger her. Jeg regnet med at sola stod bak taket. Hadde jeg vært litt mer observant, ville jeg ha oppdaget at denne buen er rød ytterst, mens haloen er rød innerst. Altså er ikke dette en del av en halo. Min tante kunne også fortelle at sola stod lavt på himmelen, og slett ikke bak taket. Litt mer observante og mindre eplekjekke observatører kunne raskt fortelle at dette er en senitbue.

Om du ligger på ryggen og ser rett opp på himmelen, så ser du på senit. Hadde senitbuen vært en hel sirkel, ville senit vært i sentrum. Derav senitbue.

Senitbuen dannes, som haloen, ved at lyset brytes når det passerer gjennom iskrystaller. De små iskrystallene i cirrus-skyene er formed som sekskantede plater. I haloen går lyset inn gjennom en og ut gjennom en annen av sidekantene på iskrystallen. I senitbuen, derimot, går lyset inn gjennom den flate oversiden av iskrystallen og ut gjennom en av sidekantene. Disse flatene står 90 grader på hverandre, så det blir akkurat som å sende lyset gjennom et prisme, som noen sikkert husker fra fysikktimene på skolen. Når lyset bøyes på vei inn i og ut av iskrystallen, ender de ulike fargene opp med å gå i litt forskjellige retninger, slik at vi ser dem hver for seg.

Sola står lavt. La oss si den står 20 grader over horisonten. Jeg kan se i retning 20 grader oppover, og så treffer lyset fra sola øynene mine direkte (men det anbefales IKKE!). Jeg kan se hvor som helst på himmelen, og siden det er en sånn fin dag, treffer blått lys fra sola øynene mine fra omtrent alle retninger – det har sprettet omkring mellom luftmolekylene, og noe av det ender omsider hos meg.

Eller jeg kan snu ansiktet mot sola og vende blikket 70 grader oppover. Da ser jeg lyset som har blitt bøyd nedover gjennom de flate iskrystallene. Blått lys bøyes mest, så det ser jeg lengst vekk fra sola. Og avhengig av hvilken retning sidekanten av iskrystallen hadde, blir lyset også vendt litt til siden, og resultatet blir en bue, mellom sola og senit, med senit som sentrum. En omvendt regnbue, et smil på himmelen.

Håper jeg får se det selv en gang.


3 kommentarer

Hvorfor man må ha mer klær på seg inne om vinteren

Om sommeren kan jeg gå barbeint og i t-skjorte når det er 20 grader inne. Om vinteren hutrer jeg i tøfler og ullgenser når termometeret viser det samme. Hvorfor er det sånn?

Dette spørsmålet forsøkte jeg å svare på i Abels tårn på fredag. Jeg har ganske fornøyd med svaret mitt, men jeg fikk noen kommentarer på e-post som fikk meg til å innse at jeg hadde hoppet over noen av de viktigste momentene. Derfor prøver jeg å komme med hele svaret her. Kunnskapsrike bygningsingeniører og andre som fortsatt ikke synes sannheten er godt nok dekket er velkomne til å gi innspill i kommentarfeltet.

Opplevelsen av temperatur

Hva er det egentlig som gjør at man føler seg varm eller kald?

Kort fortalt: Kroppen produserer varme hele tiden. Så lenge vi ikke har feber er vi 37 grader varme på innsiden. Varme vil hele tiden flytte seg fra høy til lav temperatur, slik at så lenge det er under 37 grader på utsiden, vil vi miste varme til omgivelsene. Vi har forresten muligheten til å miste varme om lufttemperaturen er over 37 grader også, ved å svette. Da brukes noe av kroppsvarmen vår til å få svetten til å fordampe.

Så lenge vi produserer like mye varme som vi mister, har vi det behagelig. Om vi mister mer varme enn vi produserer føler vi oss kalde, og i motsatt tilfelle har vi det for varmt.

Hvordan varme flytter seg

Tenk deg at du står midt i stua. Lufttemperaturen er på 20 grader. Hvordan flytter varmen seg fra kroppen din og ut i omgivelsene?

TIl lufta: Luft som er kaldere enn huden din vil bli varmet opp av deg, slik at varmen går fra din kropp til lufta. Om lufta er omtrent stillestående vil du få et lag med oppvarmet luft inntil huden slik at varmetapet går saktere, men dersom lufta er i bevegelse (trekk, for eksempel) vil du hele tiden få tilførsel av ny, kald luft slik at du mister mer varme.

20131103-221238.jpg

Til gulvet: Varme flytter seg relativt raskt gjennom faste stoffer. Der føttene dine er i kontakt med gulvet strømmer det varme fra deg og ned i gulvet. Tykke sokker, tøfler, eller gulvtepper gjør at varmen ledes saktere, slik at du mister mindre varme og føler deg mindre kald på bena. Steingulv føles kaldere enn tregulv fordi stein leder varme bedre enn det tre gjør. Om du setter deg i sofaen, eller lener deg inntil veggen, mister du varme også her.

Tll overflater du ikke berører: Alle ting stråler ut varme, hele tiden. Det er overflatetemperaturen som bestemmer hvor mye varme som blir strålt ut, og det er sånn at om du bare endrer denne temperaturen littegrann, så endrer du mengden av varmestråling ganske mye. I stua sender du ut varmestråling, og veggene, taket og vinduene stråler tilbake på deg. Jo kaldere veggene er, jo mindre varmestråling får du tilbake fra dem, slik at du totalt sett mister mer varme om veggene er kalde.

Forskjellen på sommer og vinter

Selv om lufttemperaturen i stua er den samme en vinterdag og en sommerdag, kan den opplevde temperaturen i rommet være ganske forskjellig.

Ytterveggen i stua vil ganske sikkert være kaldere om vinteren, og ikke minst er vinduene kaldere. Dette er simpelten fordi det er kaldere på utsiden, og varme strømmer ut fra stua gjennom veggen.

De andre overflatene i stua er sannsynligvis også varmere om sommeren, kanskje med unntak av taket. Om det er over 20 grader ute, flytter det seg ingen varme fra huset til utsiden. Sola har kanskje også skint inn gjennom vinduet i løpet av dagen, og varmet opp gulv, vegger og møbler. Disse overflatene har igjen varmet opp lufta. Når kvelden kommer er solvarmen lagret i de faste stoffene som finnes inne i stua, og gulvet, bordet, sofaen og veggene oppfører seg som varmeovner som holder lufttemperaturen oppe.

Om vinteren varmer du kanskje opp lufta med panelovner, radiatorer eller vedovn. Den varme lufta stiger opp mot taket, mens luft som kommer i kontakt med vinduene kjøles ned og synker mot gulvet. Det er altså vanskelig å få varmet opp gulvet skikkelig, selv om lufta er varm og god.

Du føler deg kaldere om vinteren fordi overflatene inne er kaldere. Dette skyldes både at du mottar mindre varmestråling fra dem enn om de hadde vært varmere, og fordi du mister mer varme til de overflatene du kommer i kontakt med, som for eksempel når du tråkker på gulvet.


Legg igjen en kommentar

Hvordan en tornado oppstår, og hva det har med kakao å gjøre.

Etter den ekstreme tornadoen som herjet i Oklahoma forrige uke fikk jeg lyst til å skrive om hvordan tornadoer blir til, men så ble jeg altså så fascinert av dette med adiabatisk nedkjøling at jeg ble nødt til å skrive om kakao først. Her kommer altså tornadohistorien.

Jeg har dessverre (?) ingen tornadobilder jeg har tatt selv, så dette bildet er fra Wikipedias side om tornadoer.

Jeg har dessverre (?) ingen tornadobilder jeg har tatt selv, så dette bildet er fra Wikipedias side om tornadoer.

Hvordan har det seg egentlig at så mye faenskap kan klumpe seg sammen på en plass i lufta, og fyke rundt og gjøre skade?

Vanligvis er det jo sånn at ting har en tendens til å spre seg utover. Rot, for eksempel. Det er veldig lett å få et gjevnt lag med lego i hele stua, men det krever mer innsats å få den tilbake i kassa. Vind pleier å ha den samme effekten: Har du raket sammen en svær haug med løv og overlater den til seg selv, vil den etterhvert være spredt (for alle vinder!). Vinden kommer ikke og samler sammen løvet for deg. Men når en tornado oppstår er det akkurat som om vinden samler seg på et sted, ikke for å rydde i hagen, men for å gjøre mest mulig ugagn.

Det er egentlig sånne prosesser som gjør planeten vår til det spennende stedet den faktisk er. Hadde alt bare spredt seg utover, hadde jorda vært flat og grå. Noen ganger fungerer heldigvis naturen sånn at en ting på ett sted fører til mer av den samme tingen på det samme stedet. Dette kalles for en selvforsterkende prosess, eller en ustabilitet. Rennende vann er et typisk eksempel. Når vannet har fått begynne å grave ett sted, gjør det at det blir lettere for mer vann å renne akkurat der, så får du gravd bort mer, du får mer vann, og vips har du fått ett nytt elveleie.

For å danne en tornado er vi nødt til å ha en eller flere selvforsterkende prosesser. Vi må også ha en kilde til energi. Hus kan ikke bli ødelagte helt av seg selv.

På jordoverflaten er det nesten alltid sola som står for energien. Når flomvann gjør ødeleggelser har sola først brukt energi på å flytte vann fra havet og høyt opp på land. Det er denne energien vannet kan bruke til å flytte hus når det renner nedover mot havet igjen. Energien som skal brukes i tornadoen ligger lagret i varm, fuktig luft ved bakken. Da lufta lå over Mexicogulfen, brukte sola energi på å rive vannmolekyler løs havoverflaten og sende dem opp i lufta. Dette er energi som kan bli frigjort om vannmolekylene setter seg sammen og blir til flytende vann igjen. Sola har også brukt energi på å varme opp lufta, både da den lå over havet og etter at den flyttet seg nordover og ble liggende over prærien i Oklahoma.

I Oklahoma møtes ofte denne varme, fuktige lufta sørfra med tørr, kjølig luft fra nord. Kald luft er tyngre enn varm luft, så når den kalde lufta flytter seg sørover, sklir den langs bakken og dytter den varme lufta opp.

Når den varme lufta stiger oppover, kommer den etterhvert opp i luft som har mindre trykk enn den selv. Og akkurat som når lufta du blåser med munnen blir kald fordi den utvider seg, bruker denne lufta en del av den varmeenergien den har fått fra sola til å utvide seg og dytte vekk lufta rundt seg, og den blir kaldere. Kald luft har ikke plass til like mye vanndamp i seg som det varm luft har. Når lufta blir avkjølt, begynner vannmolekylene å klumpe seg sammen på ørsmå partikler og bli til vanndråper. Da frigjøres energien som ble brukt til å fordampe vannet over havet, og den energien gjør at lufta blir varmere, igjen. Når den blir varmere, blir den igjen lettere enn lufta rundt seg – og den stiger videre oppover. Den kan selvfølgelig ikke bare stige opp og etterlate seg et tomrom, så lufta lenger ned blir trukket oppover. Dette er altså en selvforsterkende mekanisme. Luft stiger, vanndråper dannes, lufta stiger mer, trekker med seg mer luft, som igjen utvider seg og lager vann og vil stige, og trekker mer, og så videre.

Når vanndråpene som dannes blir store nok vil de begynne å dette ned som regn. Dette vil etterhvert avkjøle lufta og bakken under slik at mekanismen som løfter luft oppover stoppes. Men, om det er litt vind høyt oppe som dytter regnet vekk fra den stigende lufta, vil du få en sirkulasjon der luft stiger opp ett sted, og regn detter ned et annet sted. Er det i tillegg sånn at vinden blåser litt fortere på den ene siden enn den andre, kan dette systemet begynne å rotere. Da blir det omtrent som en snurrebass – har du først fått noe til å begynne å snurre, er det ikke så lett å stoppe det. Og nå kan situasjonen bli virkelig farlig. Luft suges inn fra sidene og oppover, kald luft og regn faller ned på sidene, det hele roterer og flytter seg og kan suge med seg hus, biler, kuer og trær når det farer forbi. Jo mer varm og fuktig luft som er tilgjengelig langs bakken, og jo tørrere og kaldere lufta rundt er, jo lengre kan tornadoen holde på.

Det som gjør tornadoen synlig er vanndråpene som er kondensert i den kalde lufta, akkurat som i en sky. Nederst ser man selvfølgelig også støv som blir virvlet opp.